ries in data stream: the novel task and algorithms[J]. Data Mining and Knowledge Discovery, 2010, 20 (2): 290324.
[2]Joel W, Giannella C. Innetwork outlier detection in wireless sensor networks [J]. Knowledge and Information System, 2013, 34 (1): 2354.
[3]夏英, 刘申艺. 实时异常轨迹检测方法及其应用[J]. 重庆邮电大学学报, 2011, 23 (4): 496499.
XIA Ying, LIU Shenyi. Real time trajectory anomaly detection method and its application [J]. Journal of Chongqing University of Posts and Telecommunications, 2011, 23 (4): 496499.
[4]Zhang Y, Hamm N, Meratnia N, et al. Statisticsbased outlier detection for wireless sensor networks [J]. International Journal of Geographical Information Science, 2012, 26 (8): 13731392.
[5]Angiulli F, Fassetti F. DOLPHIN: An efficient algorithm for mining distancesbased outliers in very large datasets [J]. ACM Transactions on Knowledge Discovery for Data (TKDD), 2009, 3(2): 157.
[6]Breunig M, Kriegel H, Ng R, et al. LOF: Identifying densitybased local outliers [C]// Proceeding of the 2000 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM, 2000: 93104.
[7]王柯柯, 崔贯勋. 基于单元的快速的大数据集离群数据挖掘算法[J]. 重庆邮电大学学报,2010, 22(5): 673677.
WANG Keke, CUI Guanxun. Fast outlier data mining algorithm based on cell in large datasets [J]. Journal of Chongqing University of Posts and Telecommunications, 2010, 22 (5): 673677.
[8]Kriegel H P, Schubert M, Zimek A. Anglebased outlier detection in high dimensional data [C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2008: 444452.
[9]Pham N, Pagh R. A nearlinear time approximation algorithm for anglebased outlier detection in high dimensional data [C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2012: 877885.
[10]Hawkins D. Identification of outliers [M]. London: Chapman and Hall, 1980: 1188.