[1]Kessissoglou N J. Power transmission in Lshaped plates including flexural and inplane vibration [J]. Journal of the Acoustical Society of America, 2004, 115 (3): 11571169.[2]Liu C C, Li F M, Fang B, et al. Active control of power flow transmission in finite connected plate [J]. Journal of Sound and Vibration, 2010, 329 (20): 41244135.[3]Caresta M, Kessissoglou N J. Free vibrational characteristics of isotropic coupled cylindricalconical shells [J]. Journal of Sound and Vibration, 2010, 329 (6): 733751.[4]Efraim E, Eisenberger M. Exact vibration frequencies of segmented axisymmetric shells [J]. ThinWalled Structures, 2006, 44 (3): 281289.[5]Huang D T, Chen D K. Dynamic characteristics of a structure with multiple attachments: A receptance approach [J]. Journal of Sound and Vibration, 2007, 307 (35): 941952.[6]Huang D T. A reverse receptance approach for analysis of vibration of grooved plates [J]. International Journal of Mechanical Sciences, 2011, 53 (12): 10841102.[7]Zhang F, Cheng L, Yam L H, et al. Modal characteristics of a simplified brake rotor model using semianalytical RayleighRitz method [J]. Journal of Sound and Vibration, 2006, 297 (12): 7278.[8]Ross M R, Sprague M A, Felippa C A, et al. Treatment of acoustic fluidstructure interaction by localized Lagrange multipliers and comparison to alternative interfacecoupling methods [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198 (912): 9861005.[9]Pian T H H, Wu C C. Hybrid and incompatible finite element methods [M]. Florida: Chapman and Hall/CRC, 2006.[10]Leissa A W. Vibration of shells (NASA SP288) [R]. USA, Washington: Government Printing Office, 1973.[11]Jafari A A, Bagheri M. Free vibration of nonuniformly ring stiffened cylindrical shells using analytical, experimental and numerical methods [J]. ThinWalled Structures, 2006, 44 (1): 8290.[12]Yim J S, Sohn D S, Lee Y S. Free vibration of clampedfree circular cylindrical shell with a plate attached at an arbitrary axial position [J]. Journal of Sound and Vibration, 1998, 213 (1): 7588.[13]Zhou D, Cheung Y K, Lo S H, et al. 3D vibration analysis of solid and hollow circular cylinders via Chebyshev–Ritz method [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192 (1314): 15751589. |