[1]Wang Z, Huang W, Jia W, et al. 3D multifields FEM computation of transverse flux induction heating for movingstrips[J]. IEEE Transactions on Magnetics, 1999, 35(3): 16421645.[2]杨晓光, 汪友华. 横向磁通感应加热装置中线圈形状对涡流及温度分布的影响[J]. 金属热处理, 2003, 28(7): 4954.YANG Xiaoguang, WANG Youhua. The effect of coil geometry on the distributions of eddy current and temperature in transverse flux induction heating equipment[J]. Heat Treatment of Metals, 2003, 28(7): 4954.[3]Dughiero F, Forzan M, Lopi S, et al. Numerical and experimental analysis of an electrothermal coupled problem for transverse flux induction heating equipment[J]. IEEE Transactions on Magnetics, 1998, 34(5): 31063109.[4]Andree W, Schulze D, WANG Zanming. 3D eddy current computation in the transverse flux induction heating equipment[J]. IEEE Transactions on Magnetics, 1994, 30(5): 30723075.[5]YANG Xiaoguang, WANG Youhua, LIU Fugui, et al. The use of neural networks combined with FEM to optimize the coil geometry and structure of transverse flux induction equipments[J]. IEEE Transactions on Applied Superconductivity, 2004, 31(3): 18541857.[6]杨晓光, 汪友华, 颜威利. 神经网络预测应用于横向磁通感应加热中涡流场与温度场的有限元分析[J]. 中国电机工程学报, 2004, 24(8): 119123.YANG Xiaoguang, WANG Youhua, YAN Weili. Neural network prediction applied to the finite element analysis of eddy current and temperature field in TFIH[J]. Proceedings of the CSEE, 2004, 24(8): 119123.[7]Mesquita R C, Bastos J P A. 3D finite element solution of induction heating problems with efficient timestepping[J]. IEEE Transactions on Magnetics, 1991, 27(5): 40564068.[8]Hayt W H. Engineering electromagnetics[M]. New York: McGrawHill, 2008.[9]Garbulsky G D, Marino P, Pignotti A. Numerical modeling of induction heating of steeltube ends[J]. IEEE Transactions on Magnetics, 1997, 33(1), 746752.[10]Callebaut J. Induction Heating[DB/OL]. (20070206)[20100523]. http://www.leonardoenergy.org/webfm_send/181. |