基于Stackelberg博弈的低碳建筑微网群与共享氢储电站系统优化配置

展开
  • 1.上海电力大学 自动化学院,上海 200090

    2. 上海交通大学 电气工程学院 上海 200240
郑墨涵(2001—),硕士生,从事储能技术研究
林鹏峰,助理教授,博士生导师;E-mail:pengfeng_lin@sjtu.edu.cn

网络出版日期: 2025-10-07

基金资助

国家自然科学基金重点项目(62233006)

Optimal Configuration of Low-Carbon Building Microgrid Clusters and Shared Hydrogen Storage Power Station Systems Based on Stackelberg Game

Expand
  • 1.College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;

    2. College Of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2025-10-07

摘要

随着清洁能源与储能技术的突破性发展,共享氢储电站(SHSPS)正逐步成为储能技术的新型应用模式。为满足多利益主体(包括共享氢储电站与低碳建筑微网群)的协同优化需求,本文提出一种基于Stackelberg博弈的多时间尺度共享氢储电站容量配置框架,旨在实现氢电耦合系统的高效利用。具体而言:上层领导者(共享氢储电站)以运行经济性为目标,结合氢能季节性进行长时间尺度容量规划;下层跟随者(低碳建筑微网群)基于冷-热-电多能源负荷约束,实现短时间尺度的优化运行决策。通过KKT条件将双层博弈模型转化为可求解的双层优化问题,并采用上海某区域实际案例验证方法的有效性。结果表明,所提方法突破了传统配置模型在多时间尺度分析上的局限性,在保障系统功率配置最优的前提下,实现了共享氢储电站与微网运营商的双向经济收益最大化,同时可再生能源消纳率显著提升。

本文引用格式

郑墨涵1, 林鹏峰2, 张传林1, 文书礼2, 朱淼2 . 基于Stackelberg博弈的低碳建筑微网群与共享氢储电站系统优化配置[J]. 上海交通大学学报, 0 : 1 . DOI: 10.16183/j.cnki.jsjtu.2025.111

Abstract

With the breakthrough developments in clean energy and energy storage technologies, shared hydrogen storage power stations (SHSPS) are becoming a new application model for energy storage systems. To meet the collaborative optimization needs of multiple stakeholders (including SHSPS and low-carbon building microgrid clusters), this study proposes a Stackelberg game-based multi-time scale capacity configuration framework for SHSPS, aiming to achieve efficient utilization of hydrogen-electric coupled systems. Specifically, the upper-level leader (SHSPS) conducts long-term capacity planning targeting operational economy while incorporating hydrogen’s seasonal characteristics, and the lower-level followers (low-carbon building microgrid clusters,LBMC) optimize short-term operations under cooling, heating, and electricity load constraints. By transforming the bi-level game model into a solvable bi-level optimization problem using KKT conditions, the method’s effectiveness is validated through a real-world case study in a Shanghai region. Results show the proposed approach overcomes the limitations of traditional configuration models in multi-timescale analysis. While ensuring optimal system power configuration, it maximizes bidirectional economic benefits for both SHSPS and LBMC operators and significantly improves the renewable energy accommodation rate.

文章导航

/