机械与动力工程

Fe-Mn合金及其螺旋弹簧的阻尼特性

  • 涂田刚 ,
  • 杨蔚涛 ,
  • 杨旗 ,
  • 徐斌
展开
  • 1.中国机械科学研究总院, 北京 100044
    2.上海材料研究所有限公司 上海市工程材料应用与评价重点实验室, 上海 200437
涂田刚(1989—),博士生,从事阻尼材料及其应用技术研究.
杨 旗,正高级工程师,博士生副导师,电话(Tel.):021-65557050;E-mail:m1866733474@163.com.

收稿日期: 2024-07-08

  修回日期: 2024-09-09

  录用日期: 2024-10-14

  网络出版日期: 2025-04-28

基金资助

上海市中央引导地方科技发展资金(三期)(YDZX20233100002004)

Damping Characteristics of Fe-Mn Alloy and Its Helical Spring

  • TU Tiangang ,
  • YANG Weitao ,
  • YANG Qi ,
  • XU Bin
Expand
  • 1. China Academy of Machinery Science and Technology, Beijing 100044, China
    2. Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Research Institute of Materials Co., Ltd., Shanghai 200437, China

Received date: 2024-07-08

  Revised date: 2024-09-09

  Accepted date: 2024-10-14

  Online published: 2025-04-28

摘要

为改变传统螺旋弹簧的无阻尼现状,采用Fe-Mn合金研制了一种具有良好阻尼特性的螺旋弹簧.首先,研究了用于制作螺旋弹簧的Fe-Mn合金材料的最佳工艺参数;然后,制备了Fe-Mn合金螺旋弹簧,并采用优化的工艺参数对其进行处理,以实现高阻尼特性;最后,通过螺旋弹簧的功能原理和解析模型,进一步分析了Fe-Mn合金螺旋弹簧的阻尼性能.结果表明,在相同外部激励条件下,与65Mn螺旋弹簧相比,Fe-Mn合金螺旋弹簧表现出显著的耗能效果.在特定的加载位移下,其损耗因子随位移的增加呈非线性指数增长,而等效刚度随位移的增加呈线性下降,表现出明显的软化特性.特别地,当Fe-Mn合金螺旋弹簧的等效应变幅小于0.3%时,可以利用其扭转应变能预测耗能特性,为弹簧设计提供理论依据.该研究为减振与隔振产品的开发和应用提供了新的思路.

本文引用格式

涂田刚 , 杨蔚涛 , 杨旗 , 徐斌 . Fe-Mn合金及其螺旋弹簧的阻尼特性[J]. 上海交通大学学报, 2025 , 59(8) : 1192 -1202 . DOI: 10.16183/j.cnki.jsjtu.2024.272

Abstract

In order to change the undamped state of traditional helical spring, a helical spring with improved damping characteristics is developed by using Fe-Mn alloy. First, the optimal process parameters for Fe-Mn alloy material in manufacturing helical springs is investigated. Then, Fe-Mn alloy helical springs are fabricated and treated with optimized parameters to achieve high damping properties. Finally, the damping properties of Fe-Mn alloy helical spring are studied through the functional principle and analytical model of the helical spring. The results show that the Fe-Mn alloy helical spring exhibits a significant energy dissipation effect compared with the 65Mn helical spring under identical external excitation conditions. Within a specific loading displacement range, the loss factor of Fe-Mn alloy helical spring increases exponentially with the increase of displacement, while its equivalent stiffness decreases linearly, exhibiting pronounced softening characteristics. Specifically, when the equivalent strain amplitude of Fe-Mn alloy helical spring is less than 0.3%, its energy dissipation can be predicted using its torsional strain energy, providing a theoretical basis for spring design. This study provides a new direction for the development and application of vibration isolation products.

参考文献

[1] 张英会, 刘辉航, 王德成. 弹簧手册(精)[M]. 第3版. 北京: 机械工业出版社, 2017.
  ZHANG Yinghui, LIU Huihang, WANG Decheng. Spring manual[M]. 3rd ed. Beijing: Machinery Industry Press, 2017.
[2] 汪志昊, 华旭刚, 陈政清, 等. 基于微型永电磁式涡流阻尼TMD的人行桥模型减振试验研究[J]. 振动与冲击, 2014, 33(20): 129-132.
  WANG Zhihao, HUA Xugang, CHEN Zhengqing, et al. Experimental study on vibration control of a model footbridge by a tiny eddy-current tuned mass damper magnets[J]. Journal of Vibration and Shock, 2014, 33(20): 129-132.
[3] 尹学军, 彭雪平, 王伟强. 某1 000 MW等级核电半速机组弹簧基础的设计与振动实测[J]. 武汉大学学报, 2013 (Sup. 1): 236-240.
  YIN Xuejun, PENG Xueping, WANG Weiqiang. Design and vibration measurement for 1 000 MW half speed nuclear power spring supported T/G foundation at an NPP[J]. Journal of Wuhan University, 2013 (Sup. 1): 236-240.
[4] 蔡龙奇, 李毅, 何伟, 等. 阻尼合金的研究发展现状[J]. 金属功能材料, 2021, 28(2): 15-28.
  CAI Longqi, LI Yi, HE Wei, et al. Research and progress in damping alloys[J]. Metallic Functional Materials, 2021, 28(2): 15-28.
[5] 叶卫林. Fe-Mn基阻尼合金的马氏体相变与阻尼性能[D]. 哈尔滨: 哈尔滨工程大学, 2018.
  YE Weilin. Martensitic transformation and damping characteristic of Fe-Mn based damping alloys[D]. Harbin: Harbin Engineering University, 2018.
[6] 王怡鑫, 徐洋, 盛晓伟, 等. 基于锰铜高阻尼合金弹簧的反作用轮隔振器性能研究[J]. 振动与冲击, 2023, 42(14): 314-320.
  WANG Yixin, XU Yang, SHENG Xiaowei, et al. Performance of reaction wheel vibration isolator with isolator a spring made of manganese-copper high damping alloy[J]. Jorunal of Vibration and Shock, 2023, 42(14): 314-320.
[7] 朱锐, 毛保全, 赵俊严, 等. 机枪遥控武器站锰铜基阻尼合金缓冲器非线性有限元分析及试验[J]. 北京理工大学学报, 2022, 42(9): 935-946.
  ZHU Rui, MAO Baoquan, ZHAO Junyan, et al. The nonlinear finite element analysis and txperiment of Mn-Cu damping alloy buffer for remote control weapon station[J]. Journal of Beijing University of Technology, 2022, 42 (9): 935-946.
[8] WANG W, FANG C, FENG W, et al. SMA-based low-damage solution for self-centering steel and composite beam-to-column connections[J]. Journal of Structural Engineering, 2020, 146(6): 04020092.
[9] 辛泰阿, 苏明杨, 李诗成, 等. 固溶热处理对Fe-Mn金属橡胶力学性能的影响[J]. 现代制造工程, 2022, 504(9): 82-90.
  XIN Taia, SU Mingyang, LI Shicheng, et al. Effect of solution heat treatment on the mechanical proformance of Fe-Mn metal rubber[J]. Modern Manufacturing Engineering, 2022, 504 (9): 82-90.
[10] LEE Y K, JUN J H, CHOI C S. Dammping capacity in Fe-Mn binary alloys[J]. ISIJ International, 1997, 37(10): 1023-1030.
[11] 滕劲, 李宁, 宋顺远, 等. C对Fe-Mn阻尼合金组织及性能的影响[C]// 2011中国功能材料技术与产业论坛. 重庆,中国:2011.
  TENG Jin, LI Ning, SONG Shunyuan, et al. Effect of C on microstructure and damping capacity of Fe-Mn alloys[C]// Proceedings of 2011 China Functional Materials Technology and Industry Forum. Chongqing, China: Scientific Research Publishing, 2011.
[12] 王世宏, 李健, 柴锋, 等. 固溶温度对Fe-19Mn合金的γ→ε相变和阻尼性能的影响[J]. 金属学报, 2020, 56(9): 1217-1226.
  WANG Shihong, LI Jian, CHAI Feng, et al. Influence of solution temperature on γ→ε transformation and damping capacity of Fe-19Mn alloy[J]. Acta Metallurgica Sinica, 2020, 56(9): 1217-1226.
[13 ] HUANG S K, ZHOU D C, LIU J H, et al. Effects of strain amplitude and temperature on the damping capacity of an Fe-19Mn alloy with different microstructures[J]. Materials Characterization, 2010, 61(11): 1227-1231.
[14] 全国钢标准化技术委员会(SAC/TC 183). 金属材料拉伸试验第1部分——室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021.
  National Steel Standardization Technical Committee (SAC/TC183). Tensile test of metal materials Part 1—Room temperature test method: GB/T 228.1—2021[S]. Beijing: China Standard Press, 2021.
[15] 全国钢铁标准化技术委员会(SAC/TC 183). 弹簧钢: GB/T 1222—2016[S]. 北京: 中国标准出版社, 2016.
  National Iron and Steel Standardization Technical Committee (SAC/TC183). Steel Standardization Technical Committee (SAC/TC183). Spring steel: GB/T 1222—2016[S]. Beijing: China Standard Press, 2016.
[16] 全国机械振动, 冲击与状态监测标准化技术委员会(SAC/TC 53). 振动与冲击隔离器静、动态性能测试方法: GB/T 15168—2013[S]. 北京: 中国标准出版社, 2013.
  National Technical Committee for Standardization of Mechanical Vibration, Shock and Condition Monitoring (SAC/TC 53). Vibration and shock isolator static and dynamic performance test method: GB/T 15168—2013[S]. Beijing: China Standard Press, 2013.
[17] 张亚辉. 结构动力学基础[M]. 大连: 大连理工大学出版社, 2007.
  ZHANG Yahui. Basis of structural dynamics[M]. Dalian: Dalian University of Technology Press, 2007.
[18] HU J, DU Q, GAO J, et al. Compressive mechanical behavior of multiple wire metal rubber[J]. Materials & Design, 2018, 140: 231-240.
[19] 姜晗, 于超, 康国政. 富氢环境下镍钛形状记忆合金弹簧变形行为的实验和理论研究[J]. 力学学报, 2023, 56(2): 422-432.
  JIANG Han, YU Chao, KANG Guozheng. Experimental and theoretical study of the deformation behavior for NiTi shape memory alloy spring under hydrogen-rich environment[J]. Theoretical and Applied Mechanics, 2023, 56(2): 422-432.
[20] ENEMARK S, SANTOS I F, SAVI M A. Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(20): 2721-2743.
[21] WAHL A. Springs[M]. New York, USA: McGraw-Hill, 1963.
文章导航

/