机械与动力工程

淬火分配钢成形极限实验与晶体塑性模拟

  • 杨浩 ,
  • 唐伟琴
展开
  • 1.合肥通用机械研究院有限公司, 合肥 230061
    2.上海交通大学 机械与动力工程学院, 上海 200240
杨 浩(1992—),工程师,从事金属材料塑性力学和氢脆研究.
唐伟琴,助理研究员;E-mail:weiqint@sjtu.edu.cn.

收稿日期: 2024-07-02

  修回日期: 2024-08-19

  录用日期: 2024-09-04

  网络出版日期: 2024-10-09

基金资助

合肥通用机械研究院有限公司博士科技基金项目(2023010792)

Experiment and Crystal Plasticity Simulation of Forming Limit of Quenching Partitioning Steel

  • YANG Hao ,
  • TANG Weiqin
Expand
  • 1. Hefei General Machinery Research Institute Co., Ltd., Hefei 230061, China
    2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2024-07-02

  Revised date: 2024-08-19

  Accepted date: 2024-09-04

  Online published: 2024-10-09

摘要

淬火分配(QP)钢因塑性变形过程会诱发马氏体相变,因而具有高强度和高延伸率的特点,但其成形性能目前尚未明确.通过Nakajima实验获得了QP1180钢板在不同应变路径下的极限应变,采用考虑相变的晶体塑性有限元模型耦合Marciniak-Kuczynski理论(CPFEM-PT-MK),分析了织构演化和相变对QP1180钢板成形极限的影响.结果表明:当应变路径ζ=0.1时,QP1180钢板的极限主应变最低,CPFEM-PT-MK模型能够较好地预测QP1180钢板的成形极限;不同应变路径下,QP1180钢各相的织构演化存在明显差异,考虑织构演化时,其成形极限更高;当不发生相变时,极限主应变最低点在应变路径ζ=0位置,与发生相变时明显不同.此外,相变并不总是提高QP1180的成形极限,其效果与应变路径有关.

本文引用格式

杨浩 , 唐伟琴 . 淬火分配钢成形极限实验与晶体塑性模拟[J]. 上海交通大学学报, 2025 , 59(8) : 1181 -1191 . DOI: 10.16183/j.cnki.jsjtu.2024.260

Abstract

Quenching-partitioning (QP) steel combines ultrahigh strength with good ductility due to the martensitic transformation during plastic deformation. However, the formability of the QP1180 steel remains unclear. In this paper, the ultimate strains of the QP1180 steel under different strain paths are obtained through Nakajima experiment. The effects of the texture evolution and phase transformation on the forming limit of QP1180 steel are analyzed by using a crystal plastic finite element model coupled with the Marciniak-Kuczynski theory (CPFEM-PT-MK). The results show that the ultimate principal strain of QP1180 steel is the lowest under the strain path ζ=0.1, and the established CPFEM-PT-MK model successfully predicts the forming limit of the QP1180 steel sheet. The texture evolutions of the constituent phases in the QP1180 steel are different under various strain paths. According to the simulation, the texture evolutions enhance the forming limit of the QP1180 steel under various strain paths. Without phase transformation, the minimum limited major strain of the QP1180 steel is located at the strain path of ζ=0, which is significantly different from that when phase transformation occurs. Furthermore, the phase transition, related to the specific strain path, does not always enhance the forming limit of the QP1180 steel.

参考文献

[1] 徐祖耀. 马氏体相变研究的进展(二)[J]. 上海金属, 2003, 25(3): 1-10.
  XU Zuyao. Progress in martensitic transformations (II)[J]. Shanghai Metals, 2003, 25(3): 1-10.
[2] 徐祖耀. 马氏体相变研究的进展(一)[J]. 上海金属, 2003, 25(3): 1-8.
  XU Zuyao. Progress in martensitic transformations(Ⅰ)[J]. Shanghai Metals, 2003, 25(3): 1-8.
[3] YI H L, SUN L, XIONG X C. Challenges in the formability of the next generation of automotive steel sheets[J]. Materials Science & Technology, 2018, 34(9): 1112-1117.
[4] CHEN X P, NIU C, LIAN C W, et al. The evaluation of formability of the 3rd generation advanced high strength steels QP980 based on digital image correlation method[J]. Procedia Engineering, 2017, 207: 556-561.
[5] MOHAMMED B, PARK T, POURBOGHRAT F, et al. Multiscale crystal plasticity modeling of multiphase advanced high strength steel[J]. International Journal of Solids & Structures, 2018, 151: 57-75.
[6] HU X. Mechanical behavior and formability of quench and partition steel sheets[J]. Strength of Materials, 2020, 52(1): 32-39.
[7] GAO X L, MIN J Y, ZHANG L, et al. Prediction and experimental validation of forming limit curve of a quenched and partitioned steel[J]. Journal of Iron & Steel Research, International, 2016, 23(6): 580-585.
[8] KEELER S P. Plastic instability and fracture in sheets stretched over rigid punches[D]. Cambridge, USA: Massachusetts Institute of Technology, 1961.
[9] HILL R. On discontinuous plastic states, with special reference to localized necking in thin sheets[J]. Journal of the Mechanics & Physics of Solids, 1952, 1(1): 19-30.
[10] ST?REN S, RICE J R. Localized necking in thin sheets[J]. Journal of the Mechanics & Physics of Solids, 1975, 23(6): 421-441.
[11] MARCINIAK Z, KUCZY?SKI K. Limit strains in the processes of stretch-forming sheet metal[J]. International Journal of Mechanical Sciences, 1967, 9(9): 609-620.
[12] FYLLINGEN ?, HOPPERSTAD O S, LADEMO O G, et al. Estimation of forming limit diagrams by the use of the finite element method and Monte Carlo simulation[J]. Computers & Structures, 2009, 87(1/2): 128-139.
[13] WANG H, WU P D, BOYLE K P, et al. On crystal plasticity formability analysis for magnesium alloy sheets[J]. International Journal of Solids & Structures, 2011, 48(6): 1000-1010.
[14] 余海燕, 高云凯. 基于M-K模型的相变诱发塑性钢板的成形极限研究[J]. 中国机械工程, 2007, 18(1): 109-113.
  YU Haiyan, GAO Yunkai. Study on forming limit diagram for transformation-induced plasticity sheet steel based on M-K model[J]. China Mechanical Engineering, 2007, 18(1): 109-113.
[15] ARETZ H. An extension of Hill’s localized necking model[J]. International Journal of Engineering Science, 2010, 48(3): 312-331.
[16] BUTCHER C, KHAMENEH F, ABEDINI A, et al. On the experimental characterization of sheet metal formability and the consistent calibration of the MK model for biaxial stretching in plane stress[J]. Journal of Materials Processing Technology, 2021, 287: 116887.
[17] 杨浩, 唐伟琴, 李大永. 考虑相变的晶体塑性有限元模型开发及验证[J/OL]. 塑性工程学报. https://link.cnki.net/urlid/11.3449.TG.20240923.0925.002.
  YANG Hao, TANG Weiqin, LI Dayong. Development and verification of crystal plastic finite element model considering phase transition[J]. Journal of Plasticity Engineering. https://link.cnki.net/urlid/11.3449.TG.20240923.0925.002.
[18] SIGNORELLI J W, BERTINETTI M A, TURNER P A. Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model[J]. International Journal of Plasticity, 2009, 25(1): 1-25.
[19] BONG H J, LEE J, HU X H, et al. Predicting forming limit diagrams for magnesium alloys using crystal plasticity finite elements[J]. International Journal of Plasticity, 2020, 126: 102630.
[20] WU P D, NEALE K W, VAN DER GIESSEN E. On crystal plasticity FLD analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical & Engineering Sciences, 1997, 453(1964): 1831-1848.
[21] RATCHEV P, VAN HOUTTE P, VERLINDEN B, et al. Prediction of forming limit diagrams of Al-Mg rolled sheets taking texture into account[J]. Texture, Stress, & Microstructure, 1994, 22(4): 219-231.
[22] PARK T, HECTOR L G, HU X H, et al. Crystal plasticity modeling of 3rd generation multi-phase AHSS with martensitic transformation[J]. International Journal of Plasticity, 2019, 120: 1-46.
[23] CONNOLLY D S, KOHAR C P, MISHRA R K, et al. A new coupled thermomechanical framework for modeling formability in transformation induced plasticity steels[J]. International Journal of Plasticity, 2018, 103: 39-66.
文章导航

/