船舶海洋与建筑工程

考虑时空效应的杭州软黏土超深基坑地表沉降分析方法

  • 熊一帆 ,
  • 应宏伟 ,
  • 张金红 ,
  • 程康 ,
  • 李冰河
展开
  • 1.河海大学 岩土力学与堤坝工程教育部重点实验室,南京 210098
    2.浙江大学 滨海和城市岩土工程研究中心,杭州 310058
    3.浙江省建筑设计研究院,杭州 310006
    4.中铁十一局集团有限公司,武汉 430061
熊一帆(1999—),硕士生,从事地下工程方面的研究.
应宏伟,教授,博士生导师;E-mail:ice898@zju.edu.cn.

收稿日期: 2023-05-18

  修回日期: 2023-08-24

  录用日期: 2024-05-21

  网络出版日期: 2024-06-25

基金资助

国家自然科学基金(51678523);浙江省建设科研项目(2018K119);中央高校基本科研业务费资助项目(B200201012)

Analysis Method for Ground Settlement Induced by Ultra-Deep Excavation in Hangzhou Soft Clay Considering Time-Space Effect

  • XIONG Yifan ,
  • YING Hongwei ,
  • ZHANG Jinhong ,
  • CHENG Kang ,
  • LI Binghe
Expand
  • 1. Key Laboratory of the Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
    2. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
    3. Zhejiang Province Institute of Architectural Design and Research, Hangzhou 310006, China
    4. China Railway 11th Bureau Group Co., Ltd., Wuhan 430061, China

Received date: 2023-05-18

  Revised date: 2023-08-24

  Accepted date: 2024-05-21

  Online published: 2024-06-25

摘要

利用PLAXIS 3D软件和软土蠕变模型,建立杭州中心项目超深基坑群B2基坑的三维数值模型,深入分析了时空因素对坑外地表沉降的影响.引入互补误差函数和三折线模型,利用数值结果对既有互补误差函数进行修正,提出了考虑时空效应的地表沉降快速分析方法.结果表明:软黏土蠕变既诱发围护墙的附加侧移从而引起土体沉降,又诱发坑外土体产生不依赖于围护墙侧移的沉降;忽略软土蠕变对预测超深基坑坑外地表沉降的影响不弱于其对墙体侧移的影响;基坑深度和开挖速率相同时,开挖面积直接决定施工时间的长短,从而影响软黏土蠕变诱发的地表沉降.

本文引用格式

熊一帆 , 应宏伟 , 张金红 , 程康 , 李冰河 . 考虑时空效应的杭州软黏土超深基坑地表沉降分析方法[J]. 上海交通大学学报, 2025 , 59(1) : 48 -59 . DOI: 10.16183/j.cnki.jsjtu.2023.199

Abstract

The PLAXIS 3D software and the soft soil creep model were used to establish a 3D numerical model of the B2 excavation within an ultra-deep excavation group, allowing for analysis of the effects of time-space factors on ground settlements. Then, the complementary error function and trilinear model were introduced. After that, the numerical results were used to correct the complementary error function. Finally, a rapid approach was proposed for predicting ground settlements while accounting for the temporal and spatial influences. The results indicate that soft soil creep not only causes additional wall deflections resulting in soil settlements but also induces soil settlements independent of these deflections. The impact of ignoring soft soil creep on prediction of ground settlement is not weaker than that of wall deflections. The excavation area determines the construction duration when the excavation depth and rate are identical, impacting ground settlements induced by soft soil creep.

参考文献

[1] 张抗寒, 陈锦剑, 王建华, 等. 紧邻基坑同步施工下坑间隧道的变形特性[J]. 上海交通大学学报, 2013, 47(10): 1537-1541.
  ZHANG Kanghan, CHEN Jinjian, WANG Jianhua, et al. Movement of tunnel between two adjacent concurrent excavations[J]. Journal of Shanghai Jiao Tong University, 2013, 47(10): 1537-1541.
[2] 肖潇, 李明广, 夏小和, 等. 基坑开挖对临近明挖暗埋隧道竖向变形的影响机理[J]. 上海交通大学学报, 2018, 52(11): 1437-1443.
  XIAO Xiao, LI Mingguang, XIA Xiaohe, et al. Mechanism analysis of influence of deep excavation on deformation of nearby cut-and-cover tunnel[J]. Journal of Shanghai Jiao Tong University, 2018, 52(11): 1437-1443.
[3] 刘俊城, 谭勇, 张生杰. 地铁车站深基坑开挖变形智能多步预测方法[J]. 上海交通大学学报, 2024, 58(7): 1108-1117.
  LIU Juncheng, TAN Yong, ZHANG Shengjie. Multi-step prediction of excavation deformation of subway station based on intelligent algorithm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1108-1117.
[4] 王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666.
  WANG Weidong, XU Zhonghua, WANG Jianhua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666.
[5] 江晓峰, 刘国彬, 张伟立, 等. 基于实测数据的上海地区超深基坑变形特性研究[J]. 岩土工程学报, 2010, 32(Sup.2): 570-573.
  JIANG Xiaofeng, LIU Guobin, ZHANG Weili, et al. Deformation characteristics of ultra-deep foundation pit in Shanghai based on measured data[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(Sup.2): 570-573.
[6] 应宏伟, 杨永文. 杭州深厚软黏土中某深大基坑的性状研究[J]. 岩土工程学报, 2011, 33(12): 1838-1846.
  YING Hongwei, YANG Yongwen. Characteristics of a large and deep soft clay excavation in Hangzhou[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1838-1846.
[7] GONZáLEZ C, SAGASETA C. Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro[J]. Computers and Geotechnics, 2001, 28(6/7): 445-468.
[8] ZHENG C, FRANZA A, JIMENEZ R. Analytical prediction for ground movements due to deep excavations in soils[J]. Tunnelling and Underground Space Technology, 2023, 141: 105316.
[9] QIAN J, TONG Y, MU L, et al. A displacement controlled method for evaluating ground settlement induced by excavation in clay[J]. Geomechanics and Engineering, 2020, 20(4): 275.
[10] 胡之锋, 陈健, 邱岳峰, 等. 挡墙水平变位诱发地表沉降的显式解析解[J]. 岩土力学, 2018, 39(11): 4165-4175.
  HU Zhifeng, CHEN Jian, QIU Yuefeng, et al. Analytical formula for ground settlement induced by horizontal movement of retaining wall[J]. Rock and Soil Mechanics, 2018, 39(11): 4165-4175.
[11] FAN X, PHOON K K, XU C, et al. Closed-form solution for excavation-induced ground settlement profile in clay[J]. Computers and Geotechnics, 2021, 137: 104266.
[12] CHEN H, LI J, YANG C, et al. A theoretical study on ground surface settlement induced by a braced deep excavation[J]. European Journal of Environmental and Civil Engineering, 2022, 26(5): 1897-1916.
[13] MU L, HUANG M. Small strain based method for predicting three-dimensional soil displacements induced by braced excavation[J]. Tunnelling and Underground Space Technology, 2016, 52: 12-22.
[14] GOH A T C, ZHANG R H, WANG W, et al. Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils[J]. Acta Geotechnica, 2020, 15: 1259-1272.
[15] YING H, CHENG K, LIU S, et al. An efficient method for evaluating the ground surface settlement of Hangzhou metro deep basement considering the excavation process[J]. Acta Geotechnica, 2022, 17: 5759-5771.
[16] CHENG K, XU R, YING H, et al. Observed performance of a 30.2 m deep-large basement excavation in Hangzhou soft clay[J]. Tunnelling and Underground Space Technology, 2021, 111: 103872.
[17] 上海市住房和城乡建设管理委员会. 基坑工程技术标准: DG/TJ 08-61-2018[S]. 上海: 同济大学出版社, 2018.
  Shanghai Housing and Urban-Rural Construction Management Committee. Foundation pit engineering technical standards: DG/TJ 08-61-2018[S]. Shanghai: Tongji University Press, 2018.
[18] 顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845.
  GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845.
[19] 应宏伟, 孙威, 吕蒙军, 等. 复杂环境下某深厚软土基坑的实测性状研究[J]. 岩土工程学报, 2014, 36 (Sup.2): 424-430.
  YING Hongwei, SUN Wei, Lü Mengjun, et al. Measured characteristics of a deep soft soil excavation in complex environment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (Sup.2): 424-430.
[20] 杜金龙, 魏祥, 杨敏. 软土基坑逆作开挖的时效分析[J]. 岩土工程学报, 2008, 30(Sup.1): 395-399.
  DU Jinlong, WEI Xiang, YANG Min. Time effect analysis of top-down excavation of foundation pits in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(Sup.1): 395-399.
[21] 北京金土木软件技术有限公司. PLAXIS岩土工程软件使用指南[M]. 北京: 人民交通出版社, 2010.
  Beijing Jintumu Software Technology Co., Ltd.. PLAXIS geotechnical engineering software usage guide[M]. Beijing: China Communications Press, 2010.
[22] ROBOSKI J, FINNO R J. Distributions of ground movements parallel to deep excavations in clay[J]. Canadian Geotechnical Journal, 2006, 43(1): 43-58.
[23] 上海市勘察设计行业协会, 上海市现代建筑设计(集团)有限公司, 上海市建工(集团)总公司. 基坑工程技术规范: DG/TJ 08-61-2010[S]. 上海: [出版者不详], 2010.
  Shanghai Survey and Design Industry Association, Shanghai Modern Architectural Design (Group) Co., Ltd., Shanghai Construction Engineering (Group) Corporation. Foundation pit engineering technical specification: DG/TJ 08-61-2010[S]. Shanghai: [s. n.], 2010.
文章导航

/