收稿日期: 2023-11-10
修回日期: 2024-01-11
录用日期: 2024-01-29
网络出版日期: 2024-04-30
基金资助
国家自然科学基金资助项目(51977098)
Sub-Synchronous Oscillations Caused by Interaction of a PMSG-Based Wind Farm with a Four-Terminal MMC-HVDC Grid
Received date: 2023-11-10
Revised date: 2024-01-11
Accepted date: 2024-01-29
Online published: 2024-04-30
针对风电场接入我国某四端环形柔性直流电网多次出现次同步振荡的问题,建立直驱风电接入四端柔直电网的小信号模型,揭示现场柔直工程的次同步振荡机理.研究发现,直驱风电场仅与直接接入的模块化多电平换流站(MMC)紧密耦合,其他MMC对次同步振荡模态影响较小,仅研究风电场与柔直相互作用的次同步振荡问题可建立风电场直接接入单端柔直系统的简化模型,忽略其他MMC的影响.直驱风电场与直接接入的MMC相互作用系统中,有功耦合和无功耦合次同步振荡模态并存,且随着风电场出力逐渐增大,有功耦合次同步模态阻尼增大,无功耦合次同步模态阻尼减小,复现了现场风电场有功增大次同步振荡的规律.风电场定无功功率外环积分系数和锁相环比例系数越小,风电场侧换流站交流电压q轴分量外环积分系数越大,无功耦合振荡模式越稳定,通过优化以上参数可降低系统失稳的风险.最后利用电磁暂态时域仿真软件PSCAD搭建直驱风电接入四端柔直电网的仿真模型,验证了上述理论分析的正确性.
关键词: 基于模块化多电平换流器的柔性直流电网; 直驱风电机组; 次同步振荡; 小信号模型
白峰 , 陈武晖 , 秦伟 . 直驱风电与四端柔性直流电网相互作用的次同步振荡研究[J]. 上海交通大学学报, 2025 , 59(11) : 1707 -1719 . DOI: 10.16183/j.cnki.jsjtu.2023.574
Multiple occurrences of sub-synchronous oscillations have been observed following the integration of a wind farm into a four-terminal ring-structured modular multilevel converter (MMC)-high-voltage direct current (HVDC) grid in China. To address repeated oscillation, this paper develops a small-signal model of a direct-drive wind farm integrated into the four-terminal MMC-HVDC system, and reveals the underlying mechanism of the sub-synchronous oscillations observed in the actual project. It is found that a direct-drive wind farm is closely coupled only with the directly connected MMC, while other MMCs have little impact on sub-synchronous oscillation modes. Therefore, when studying the sub-synchronous oscillation issues involving the interaction between the wind farm and the flexible DC system, a simplified model can be established using a single-ended flexible DC system directly connected to the wind farm, ignoring the influence of other MMCs. It is also found that in the system where a direct-drive wind farm interacts with a directly connected MMC, both active power-coupled sub-synchronous oscillation modes and reactive power-coupled sub-synchronous oscillation modes coexist. As the output power of the wind farm gradually increases, the damping of the active power-coupled sub-synchronous mode increases, while the damping of the reactive power-coupled sub-synchronous mode decreases, reproducing the onsite phenomenon where an increase in wind farm active power aggravates sub-synchronous oscillations. The smaller the integral gain of the outer loop of the wind farm’s reactive power controller and the proportional gain of the phase-locked loop (PLL), and the larger the integral gain of the q-axis component of the AC voltage outer loop at the wind farm-side converter station, the more stable the reactive power-coupled oscillation mode becomes. By optimizing these parameters, the risk of system instability can be reduced. A simulation model of a direct-drive wind farm connected to a four-terminal flexible DC grid was built using the electromagnetic transient simulation software PSCAD (power systems computer aided design), and the correctness of the above theoretical analysis was verified.
| [1] | 辛保安, 郭铭群, 王绍武, 等. 适应大规模新能源友好送出的直流输电技术与工程实践[J]. 电力系统自动化, 2021, 45(22): 1-8. |
| XIN Bao’an, GUO Mingqun, WANG Shaowu, et al. Friendly HVDC transmission technologies for large-scale renewable energy and their engineering practice[J]. Automation of Electric Power Systems, 2021, 45(22): 1-8. | |
| [2] | 张志强, 李秋彤, 余浩, 等. 海上直驱风电经柔直并网系统的次/超同步振荡特性分析[J]. 上海交通大学学报, 2022, 56(12): 1572-1583. |
| ZHANG Zhiqiang, LI Qiutong, YU Hao, et al. Analysis of sub/super-synchronous oscillation of direct-drive offshore wind power grid-connected system via VSC-HVDC[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1572-1583. | |
| [3] | 李云丰, 汤广福, 贺之渊, 等. MMC型直流输电系统阻尼控制策略研究[J]. 中国电机工程学报, 2016, 36(20): 5492-5503. |
| LI Yunfeng, TANG Guangfu, HE Zhiyuan, et al. Damping control strategy research for MMC based HVDC system[J]. Proceedings of the CSEE, 2016, 36(20): 5492-5503. | |
| [4] | 尹聪琦, 谢小荣, 刘辉, 等. 柔性直流输电系统振荡现象分析与控制方法综述[J]. 电网技术, 2018, 42(4): 1117-1123. |
| YIN Congqi, XIE Xiaorong, LIU Hui, et al. Analysis and control of the oscillation phenomenon in VSC-HVDC transmission system[J]. Power System Technology, 2018, 42(4): 1117-1123. | |
| [5] | Lü J, CAI X, AMIN M, et al. Sub-synchronous oscillation mechanism and its suppression in MMC-based HVDC connected wind farms[J]. IET Generation, Transmission & Distribution, 2018, 12(4): 1021-1029. |
| [6] | LIU H K, XIE X R, HE J B, et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4708-4720. |
| [7] | LIN H F, XUE T, Lü J, et al. Impact of different AC voltage control modes of wind-farm-side MMC on stability of MMC-HVDC with offshore wind farms[J]. Journal of Modern Power Systems and Clean Energy, 2023, 11(4): 1687-1699. |
| [8] | Lü J, ZHANG X, CAI X, et al. Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2134-2148. |
| [9] | 邵冰冰, 赵书强, 裴继坤, 等. 直驱风电场经VSC-HVDC并网的次同步振荡特性分析[J]. 电网技术, 2019, 43(9): 3344-3352. |
| SHAO Bingbing, ZHAO Shuqiang, PEI Jikun, et al. Subsynchronous oscillation characteristic analysis of grid-connected DDWFs via VSC-HVDC system[J]. Power System Technology, 2019, 43(9): 3344-3352. | |
| [10] | 邵冰冰, 赵书强, 高本锋, 等. 多直驱风机经VSC-HVDC并网系统场内/场网次同步振荡特性分析[J]. 中国电机工程学报, 2020, 40(12): 3835-3846. |
| SHAO Bingbing, ZHAO Shuqiang, GAO Benfeng, et al. Inside-wind-farm/wind-farm-grid sub-synchronous oscillation characteristics analysis in multiple D-PMSGs interfaced with VSC-HVDC system[J]. Proceedings of the CSEE, 2020, 40(12): 3835-3846. | |
| [11] | SHAO B B, ZHAO S Q, YANG Y H, et al. Sub-synchronous oscillation characteristics and analysis of direct-drive wind farms with VSC-HVDC systems[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2): 1127-1140. |
| [12] | 李云丰, 赵文广, 孔明, 等. 直驱风电场经柔直并网的虚拟并联阻抗次同步振荡抑制策略[J]. 中国电机工程学报, 2022, 42(17): 6326-6337. |
| LI Yunfeng, ZHAO Wenguang, KONG Ming, et al. Virtual paralleled-impedance control strategy of flexible HVDC connecting to the PMSG-based wind farm for sub-synchronous oscillation suppression[J]. Proceedings of the CSEE, 2022, 42(17): 6326-6337. | |
| [13] | 陈宝平, 林涛, 陈汝斯, 等. 采用VSC-HVDC并网的直驱风电场次/超同步振荡特性[J]. 电力系统自动化, 2018, 42(22): 44-51. |
| CHEN Baoping, LIN Tao, CHEN Rusi, et al. Analysis on characteristics of sub/super-synchronous oscillation caused by grid-connected direct-drive wind farm via VSC-HVDC system[J]. Automation of Electric Power Systems, 2018, 42(22): 44-51. | |
| [14] | AMIN M, MOLINAS M. Understanding the origin of oscillatory phenomena observed between wind farms and HVdc systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 378-392. |
| [15] | 尹睿, 孙媛媛, 王姗姗, 等. 直驱风机经柔直送出系统多控制环节间交互机理研究[J]. 中国电机工程学报, 2022, 42(10): 3627-3641. |
| YIN Rui, SUN Yuanyuan, WANG Shanshan, et al. The interaction mechanism analysis among the different control loops of the direct-drive wind turbine connected VSC-HVDC systems[J]. Proceedings of the CSEE, 2022, 42(10): 3627-3641. | |
| [16] | KUNJUMUHAMMED L P, PAL B C, GUPTA R, et al. Stability analysis of a PMSG-based large offshore wind farm connected to a VSC-HVDC[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1166-1176. |
| [17] | WANG Y F, ZHAO C Y, GUO C Y, et al. Dynamics and small signal stability analysis of PMSG-based wind farm with an MMC-HVDC system[J]. CSEE Journal of Power and Energy Systems, 2020, 6(1): 226-235. |
| [18] | 庞博, 郭春义, 王潇, 等. 风电接入对柔性直流电网站间耦合振荡模式的影响及站间交互作用的定量评估[J]. 电网技术, 2023, 47(8): 3206-3216. |
| PANG Bo, GUO Chunyi, WANG Xiao, et al. Influence of wind power access on coupling oscillation modes between converter stations in MMC-based HVDC grid and quantitative evaluation of interaction[J]. Power System Technology, 2023, 47(8): 3206-3216. | |
| [19] | 王烨. 基于模块化多电平换流器的直流电网小信号稳定性研究[D]. 北京: 华北电力大学, 2021. |
| WANG Ye. Research on small signal stability of DC network based on modular multilevel converter[D]. Beijing: North China Electric Power University, 2021. | |
| [20] | 刘威, 谢小荣, 姜齐荣, 等. 变流式新能源机组的次/超同步振荡、小扰动同步稳定性与阻抗模型分析[J]. 清华大学学报(自然科学版), 2022, 62(10): 1706-1714. |
| LIU Wei, XIE Xiaorong, JIANG Qirong, et al. Sub-/super-synchronous oscillation, small signal synchronizing stability, and impedance model analysis of converter-based renewable power generators[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(10): 1706-1714. | |
| [21] | 孙焜, 姚伟, 文劲宇. 双馈风电场经柔直并网系统次同步振荡机理及特性分析[J]. 中国电机工程学报, 2018, 38(22): 6520-6532. |
| SUN Kun, YAO Wei, WEN Jinyu. Mechanism and characteristics analysis of subsynchronous oscillation caused by DFIG-based wind farm integrated into grid through VSC-HVDC system[J]. Proceedings of the CSEE, 2018, 38(22): 6520-6532. | |
| [22] | 宋斯珩, 赵书强. 基于转矩法的双馈风电场经柔直并网系统次同步振荡分析[J]. 电网技术, 2020, 44(2): 630-636. |
| SONG Siheng, ZHAO Shuqiang. Analysis of sub-synchronous oscillation of DFIG-based wind farm integrated to grid through VSC-HVDC system based on torque method[J]. Power System Technology, 2020, 44(2): 630-636. | |
| [23] | 唐冰婕, 迟永宁, 田新首, 等. 基于阻抗模型闭环极点的双馈风电系统次同步振荡稳定性分析[J]. 电网技术, 2020, 44(3): 871-879. |
| TANG Bingjie, CHI Yongning, TIAN Xinshou, et al. Stability analysis of subsynchronous oscillation in DFIG-based wind power system based on closed-loop poles of impedance model[J]. Power System Technology, 2020, 44(3): 871-879. | |
| [24] | 吕敬, 蔡旭, 张占奎, 等. 海上风电场经MMC-HVDC并网的阻抗建模及稳定性分析[J]. 中国电机工程学报, 2016, 36(14): 3771-3780. |
| Lü Jing, CAI Xu, ZHANG Zhankui, et al. Impedance modeling and stability analysis of MMC-based HVDC for offshore wind farms[J]. Proceedings of the CSEE, 2016, 36(14): 3771-3780. |
/
| 〈 |
|
〉 |