新型电力系统与综合能源

考虑5G基站可调度备用储能和智能软开关的主动配电网协同优化调度方法

  • 高崇 ,
  • 段瑶 ,
  • 程苒 ,
  • 陈沛东 ,
  • 周姝灿 ,
  • 张沈习 ,
  • 陈玮林 ,
  • 刘志文
展开
  • 1 广东电网有限责任公司电网规划研究中心, 广州 510308
    2 上海交通大学 电力传输与功率变换控制教育部重点实验室, 上海 200240
    3 南方电网能源发展研究院有限责任公司, 广州 510670
高 崇(1983—),高级工程师,从事电力系统规划与运行方面的研究.
张沈习,副研究员,博士生导师;E-mail:willzsx@163.com.

收稿日期: 2024-01-12

  修回日期: 2024-03-28

  录用日期: 2024-04-10

  网络出版日期: 2024-05-01

基金资助

中国南方电网有限责任公司科技项目(GDKJXM20220273);国家自然科学基金项目(U22B20114)

Collaborative Optimization Scheduling Method for Active Distribution Networks Considering Dispatchable Backup Batteries of 5G Base Station and Soft Open Point

  • GAO Chong ,
  • DUAN Yao ,
  • CHENG Ran ,
  • CHEN Peidong ,
  • ZHOU Shucan ,
  • ZHANG Shenxi ,
  • CHEN Weilin ,
  • LIU Zhiwen
Expand
  • 1 Grid Planning and Research Center, Guangdong Power Grid Co., Ltd., Guangzhou 510308, China
    2 Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
    3 Energy DevelopmentResearch Institute, China Southern Power Grid, Guangzhou 510670, China

Received date: 2024-01-12

  Revised date: 2024-03-28

  Accepted date: 2024-04-10

  Online published: 2024-05-01

摘要

随着以风电、光伏为主的分布式电源在终端能源消费中占比不断提升,充分调度电网内部的灵活性资源、提升主动配电网(ADN)的调控能力具有重要意义.为此,提出一种考虑5G基站可调度备用储能和智能软开关的ADN协同优化调度方法.首先,分析5G基站功耗模型,建立计及5G基站通信负载和ADN供电节点可靠性的备用储能容量评估模型.在此基础上,以最小化ADN综合运行费用为目标函数,综合考虑风电、光伏出力和负荷需求的不确定性,构建基于机会约束的ADN协同优化调度模型.为提高模型求解效率,采用二阶锥松弛和基于拉丁超立方采样的机会约束确定性转化法,将模型转化为混合整数二阶锥规划问题.最后,通过IEEE 33节点ADN算例验证了所提方法的可行性和有效性.

本文引用格式

高崇 , 段瑶 , 程苒 , 陈沛东 , 周姝灿 , 张沈习 , 陈玮林 , 刘志文 . 考虑5G基站可调度备用储能和智能软开关的主动配电网协同优化调度方法[J]. 上海交通大学学报, 2025 , 59(11) : 1603 -1617 . DOI: 10.16183/j.cnki.jsjtu.2024.020

Abstract

As the proportion of distributed generation, mainly wind turbine generation and photovoltaic, in terminal energy consumption increases, it is of great significance to fully utilize the flexibility resources within power grids and enhance the regulation capability of active distribution networks (ADN). To this end, an ADN collaborative optimization scheduling method is proposed considering dispatchable backup battery of 5G base station (BS) and soft open point. First, an analysis of the power consumption model of 5G BS is conducted, leading to the establishment of a backup battery capacity evaluation model which considers the communication load of 5G BS and the reliability of ADN nodes. Based on this and taking the minimization of the comprehensive operating cost of ADN as the objective function, considering the uncertainty of wind power, photovoltaic output, and load demand, an ADN collaborative optimal scheduling model based on chance constraints is developed. A second-order cone relaxation and a chance-constrained determinization approach based on Latin hypercube sampling are employed to enhance the solution efficiency of the model, which transforms the model into a mixed-integer second-order cone programming problem. Finally, the feasibility and effectiveness of the proposed method are verified by the IEEE 33-bus ADN case.

参考文献

[1] 鲁宗相, 林弋莎, 乔颖, 等. 极高比例可再生能源电力系统的灵活性供需平衡[J]. 电力系统自动化, 2022, 46(16): 3-16.
  LU Zongxiang, LIN Yisha, QIAO Ying, et al. Flexibility supply-demand balance in power system with ultra-high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46(16): 3-16.
[2] 吕小东, 高红均, 贺帅佳, 等. 计及混合通信组网的信息物理主动配电系统协调规划[J]. 中国电机工程学报, 2023, 43(13): 4987-5001.
  Lü Xiaodong, GAO Hongjun, HE Shuaijia, et al. Integrated planning of cyber-physical active distribution system considering hybrid communication networking[J]. Proceedings of the CSEE, 2023, 43(13): 4987-5001.
[3] 雍培, 张宁, 慈松, 等. 5G通信基站参与需求响应: 关键技术与前景展望[J]. 中国电机工程学报, 2021, 41(16): 5540-5552.
  YONG Pei, ZHANG Ning, CI Song, et al. 5G communication base stations participating in demand response: Key technologies and prospects[J]. Proceedings of the CSEE, 2021, 41(16): 5540-5552.
[4] 曾博, 穆宏伟, 董厚琦, 等. 考虑5G基站低碳赋能的主动配电网优化运行[J]. 上海交通大学学报, 2022, 56(3): 279-292.
  ZENG Bo, MU Hongwei, DONG Houqi, et al. Optimization of active distribution network operation considering decarbonization endowment from 5G base stations[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 279-292.
[5] HAN J P, LIU N, CATAL?O J P S. Optimization of distribution network and mobile network with interactive balance of flexibility and power[J]. IEEE Transactions on Power Systems, 2023, 38(3): 2512-2524.
[6] 麻秀范, 孟祥玉, 朱秋萍, 等. 计及通信负载的5G基站储能调控策略[J]. 电工技术学报, 2022, 37(11): 2878-2887.
  MA Xiufan, MENG Xiangyu, ZHU Qiuping, et al. Control strategy of 5G base station energy storage considering communication load[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2878-2887.
[7] 李俊双, 胡炎, 邰能灵. 计及通信负载与供电可靠性的5G基站储能与配电网协同优化调度[J]. 上海交通大学学报, 2023, 57(7): 791-802.
  LI Junshuang, HU Yan, TAI Nengling. Collaborative optimization scheduling of 5G base station energy storage and distribution network considering communication load and power supply reliability[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 791-802.
[8] 陈实, 郭正伟, 周步祥, 等. 考虑5G基站储能可调度容量的有源配电网协同优化调度方法[J]. 电网技术, 2023, 47(12): 5225-5241.
  CHEN Shi, GUO Zhengwei, ZHOU Buxiang, et al. Coordinated optimization scheduling for active distribution networks considering schedulable capacity of energy storage for 5G base stations[J]. Power System Technology, 2023, 47(12): 5225-5241.
[9] 乔锐勋, 王军华, 韦道明, 等. 计及后备储能及空调调度潜力的5G基站多时间尺度优化方法[J]. 电力系统自动化, 2023, 47(4): 111-120.
  QIAO Ruixun, WANG Junhua, WEI Daoming, et al. Multi-time-scale optimization method for 5G base station considering backup energy storage and air-conditioning scheduling potential[J]. Automation of Electric Power Systems, 2023, 47(4): 111-120.
[10] 王成山, 季节, 冀浩然, 等. 配电系统智能软开关技术及应用[J]. 电力系统自动化, 2022, 46(4): 1-14.
  WANG Chengshan, JI Jie, JI Haoran, et al. Technologies and application of soft open points in distribution networks[J]. Automation of Electric Power Systems, 2022, 46(4): 1-14.
[11] 张宁, 杨经纬, 王毅, 等. 面向泛在电力物联网的5G通信: 技术原理与典型应用[J]. 中国电机工程学报, 2019, 39(14): 4015-4025.
  ZHANG Ning, YANG Jingwei, WANG Yi, et al. 5G communication for the ubiquitous Internet of Things in electricity: Technical principles and typical applications[J]. Proceedings of the CSEE, 2019, 39(14): 4015-4025.
[12] YONG P, ZHANG N, HOU Q C, et al. Evaluating the dispatchable capacity of base station backup batteries in distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3966-3979.
[13] 刘传铨, 张焰. 计及分布式电源的配电网供电可靠性[J]. 电力系统自动化, 2007, 31(22): 46-49.
  LIU Chuanquan, ZHANG Yan. Distribution network reliability considering distribution generation[J]. Automation of Electric Power Systems, 2007, 31(22): 46-49.
[14] 熊小萍, 杨露, 李宁, 等. 基于仿射最小路法的含分布式电源配电网可靠性分析[J]. 电力系统自动化, 2017, 41(17): 43-50.
  XIONG Xiaoping, YANG Lu, LI Ning, et al. Reliability analysis of distribution network with distributed generators based on affine minimal path method[J]. Automation of Electric Power Systems, 2017, 41(17): 43-50.
[15] YONG P, ZHANG N, LIU Y X, et al. Exploring the cellular base station dispatch potential towards power system frequency regulation[J]. IEEE Transactions on Power Systems, 2022, 37(1): 820-823.
[16] YONG P, BOTTERUD A, ZHANG N, et al. Capacity value of uninterruptible power supply storage[J]. IEEE Transactions on Power Systems, 2023, 38(2): 1763-1766.
[17] 高聪哲, 黄文焘, 余墨多, 等. 基于智能软开关的主动配电网电压模型预测控制优化方法[J]. 电工技术学报, 2022, 37(13): 3263-3274.
  GAO Congzhe, HUANG Wentao, YU Moduo, et al. A model predictive control method to optimize voltages for active distribution networks with soft open point[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3263-3274.
[18] AHMADI H, MARTí J R. Mathematical representation of radiality constraint in distribution system reconfiguration problem[J]. International Journal of Electrical Power & Energy Systems, 2015, 64: 293-299.
[19] 王强强, 姚良忠, 盛万兴, 等. 基于机会约束规划的配电网分布式光伏承载力提升方法[J]. 电力系统自动化, 2023, 47(18): 132-141.
  WANG Qiangqiang, YAO Liangzhong, SHENG Wanxing, et al. Enhancement method for distributed photovoltaic hosting capacity of distribution network based on chance-constrained programming[J]. Automation of Electric Power Systems, 2023, 47(18): 132-141.
[20] JIANG X, ZHOU Y, MING W L, et al. An overview of soft open points in electricity distribution networks[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 1899-1910.
[21] ZHOU A P, YANG M, WANG Z Y, et al. A linear solution method of generalized robust chance constrained real-time dispatch[J]. IEEE Transactions on Power Systems, 2018, 33(6): 7313-7316.
[22] 董志辉, 林凌雪. 基于改进模糊C均值聚类时段划分的配电网动态重构[J]. 电网技术, 2019, 43(7): 2299-2305.
  DONG Zhihui, LIN Lingxue. Dynamic reconfiguration of distribution network based on improved fuzzy C-means clustering of time division[J]. Power System Technology, 2019, 43(7): 2299-2305.
[23] 张雁钦. 移动通信网流量数据分析及预测研究[D]. 合肥: 中国科学技术大学, 2016.
  ZHANG Yanqin. Traffic data analysis and forecasting in mobile communication networks[D]. Hefei: University of Science and Technology of China, 2016.
[24] 徐韩伟, 刘丽军, 黄惠钰, 等. 基于P-Box和CVaR并考虑灵活性的配电网区间优化方法[J]. 高电压技术, 2024, 50(4): 1478-1487.
  XU Hanwei, LIU Lijun, HUANG Huiyu, et al. Interval optimization dispatching method considering flexibility of the distribution net-work based on P-Box and CVaR[J]. High Voltage Engineering, 2024, 50(4): 1478-1487.
文章导航

/