船舶海洋与建筑工程

三维背景洋流作用下海洋细长管线位移场反演研究

  • 郭力 ,
  • 袁昱超 ,
  • 唐文勇
展开
  • 1 上海交通大学 海洋工程全国重点实验室
    2 船舶海洋与建筑工程学院, 上海 200240
郭 力(1997—),博士后,从事海洋细长结构物反演研究.
袁昱超,副研究员,电话(Tel.):021-34204470;E-mail:godyyc@sjtu.edu.cn.

收稿日期: 2024-01-05

  修回日期: 2024-03-05

  录用日期: 2024-04-08

  网络出版日期: 2024-04-17

基金资助

国家自然科学基金面上项目(52371283)

Inversion of Displacement Field of Marine Slender Pipelines Under Three-Dimensional Background Ocean Currents

  • GUO Li ,
  • YUAN Yuchao ,
  • TANG Wenyong
Expand
  • 1 State Key Laboratory of Ocean Engineering
    2 School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2024-01-05

  Revised date: 2024-03-05

  Accepted date: 2024-04-08

  Online published: 2024-04-17

摘要

海洋管线在海洋工程装备中应用广泛,在黑暗未知的海底极易受到船锚、深潜器等水下结构物的意外破坏,开展海洋管线平衡位形状态监测研究可有效保障管线的安全.本文基于逆有限元法开发了海洋管线在三维背景洋流作用下的位移场反演模型,包含输入参数模块、坐标转换模块和位移重构函数模块,考虑了悬链线型海洋管线曲率大、三向耦合大位移、局部翻转等特征,解决了三维背景洋流作用下悬链线型管线位移场低模态、不规则给位移场反演带来的技术难题,研究了监测点数量和监测点布置位置对位移场反演精度的影响.测点间距100 m、30° 布置的方式可满足工程精度要求,研究结果可为海洋管线健康监测系统设计提供一定的思路和方法.

本文引用格式

郭力 , 袁昱超 , 唐文勇 . 三维背景洋流作用下海洋细长管线位移场反演研究[J]. 上海交通大学学报, 2025 , 59(12) : 1815 -1823 . DOI: 10.16183/j.cnki.jsjtu.2024.007

Abstract

Marine pipelines are widely used in offshore engineering and are highly vulnerable to accidental damage caused by underwater structures such as ship anchors and deep-sea submersibles, especially in the dark and unpredictable marine environment. Research on configuration monitoring of marine pipelines is essential to ensure their operational safety. This paper develops a displacement field inversion model for marine pipelines under the influence of three-dimensional background ocean currents, based on the inverse finite element method. The model consists of an input parameter module, a coordinate conversion module, and a displacement reconstruction function module. It takes into account key characteristics such as large curvature, three-dimensional coupling with large displacements, and local flipping behavior. The proposed approach addresses the technical challenges associated with low-order deformation modes and irregular displacement patterns. The impact of the number and layout of monitoring points on the accuracy of displacement field inversion is studied. The results show that the layout with a monitoring point spacing of 100 m and an angle of 30° can meet the engineering accuracy requirements. The findings of this paper can provide valuable insights and methods for the design of marine pipeline health monitoring systems.

参考文献

[1] XU C, CHEN J, YAN D, et al. Review of underwater cable shape detection[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(3): 597-606.
[2] 李经廷, 汪智峰, 檀晓光, 等. 深水钢悬链立管监测系统及其安装技术[J]. 石油和化工设备, 2023, 26(1): 93-96.
  LI Jingting, WANG Zhifeng, TAN Xiaoguang, et al. Monitoring system and installation technology for deepwater steel suspension chain riser[J]. Petroleum and Chemical Equipment, 2023, 26(1): 93-96.
[3] 李达, 吕柏呈, 武文华, 等. 海洋平台现场监测技术现状及展望[J]. 中国海上油气, 2022, 34(2): 165-179.
  LI Da, Lü Baicheng, WU Wenhua, et al. Status and prospect of offshore platform on-site monitoring technology[J]. China Offshore Oil and Gas, 2022, 34(2): 165-179.
[4] MASOUDI A, PILGRIM J, NEWSON T, et al. Subsea cable condition monitoring with distributed optical fiber vibration sensor[J]. Journal of Lightwave Technology, 2019, 37(4): 1352-1358.
[5] 高云, 宗智, 周力, 等. 钢悬链式立管涡激振动疲劳损伤参数分析[J]. 船舶力学, 2012, 16(8): 943-953.
  GAO Yun, ZONG Zhi, ZHOU Li, et al. Parameters analysis of vortex-induced vibration fatigue damage on steel catenary riser[J]. Journal of Ship Mechanics, 2012, 16(8): 943-953.
[6] 张智奇, 任浩杰, 付世晓, 等. 均匀流作用下双柔性异管径立管响应特性试验研究[J]. 船舶力学, 2021, 25(1): 16-28.
  ZHANG Zhiqi, REN Haojie, FU Shixiao, et al. Experimental study on response characteristics of double flexible pipe with different diameters under uniform flow[J]. Journal of Ship Mechanics, 2021, 25(1): 16-28.
[7] 李效民, 柳润波, 顾洪禄, 等. 钻井立管下放安装过程中涡激振动响应实验研究[J]. 中国海洋大学学报(自然科学版), 2023, 53(10): 63-73.
  LI Xiaomin, LIU Runbo, GU Honglu, et al. Experimental study on vortex induced vibration response of drilling riser during lowering and installation[J]. Periodical of Ocean University of China, 2023, 53(10): 63-73.
[8] 胡明月, 吴邵庆, 董萼良. 基于逆有限元法的三维壁板结构变形场重构[J]. 工程力学, 2023, 11:1-11.
  HU Mingyue, WU Shaoqing, DONG Eliang. Deformation reconstruction of a three-dimensional panel structure upon IFEM[J]. Engineering Mechanics, 2023, 11:1-11.
[9] 李婧. 基于逆有限元法的某舱室结构变形监测系统开发[D]. 武汉: 华中科技大学, 2022.
  LI Jing. Development of deformation monitoring system for cabin structure based on inverse finite element method[D]. Wuhan: Huazhong University of Science and Technology, 2022.
[10] 闫宏生, 白超迪, 贾同宇, 等. 逆有限元法在船体加筋板结构变形重构中的应用[J]. 中国造船, 2023, 64(1): 168-179.
  YAN Hongsheng, BAI Chaodi, JIA Tongyu, et al. Application of inverse finite element in structural deformation reconstruction of ship reinforced plate[J]. Shipbuilding of China, 2023, 64(1): 168-179.
[11] 蔡鹏越. 用于结构位移场重构的逆有限元法研究[D]. 南京: 南京航空航天大学, 2016.
  CAI Pengyue. Investigation on the inverse FEM for structural displacement reconstruction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
[12] 朱梦杰, 任亮, 李宏男, 等. 基于iBeam3单元逆有限元法的冻土区管道变形研究[J]. 工程力学, 2022, 39(10): 61-67.
  ZHU Mengjie, REN Liang, LI Hongnan, et al. Research on pipeline deformation in permafrost region using inverse finite element method based on iBeam3 element[J]. Engineering Mechanics, 2022, 39(10): 61-67.
[13] 陈嘉明. 深海钢悬链线立管与海床土非线性相互作用研究[D]. 舟山: 浙江海洋大学, 2022.
  CHEN Jiaming. Study on the nonlinear riser-soil interaction of deepwater steel catenary riser[D]. Zhoushan: Zhejiang Ocean University, 2022.
文章导航

/