船舶海洋与建筑工程

黏弹性围岩纵向变形曲线及其释放系数演化规律

  • 王嘉琛 ,
  • 孟令赞 ,
  • 张顶立 ,
  • 卢松 ,
  • 文明
展开
  • 1.北京交通大学 城市地下工程教育部重点实验室,北京 100044
    2.北京城建设计发展集团股份有限公司 北京市轨道结构工程技术研究中心,北京 100037
    3.北京市应急管理科学技术研究院 城市运行安全研究中心,北京 101101
王嘉琛(1998—),博士生,从事隧道与地下工程研究.
张顶立,教授,博士生导师,电话(Tel.):010-51688114;E-mail:zhang_dingli@263.net.

收稿日期: 2023-07-28

  修回日期: 2024-02-20

  录用日期: 2024-03-27

  网络出版日期: 2024-04-10

基金资助

中央高校基本科研业务费专项资金(2023YJS049)

Evolution Law of Longitudinal Deformation Curve and Release Coefficient of Viscoelastic Rock

  • WANG Jiachen ,
  • MENG Lingzan ,
  • ZHANG Dingli ,
  • LU Song ,
  • WEN Ming
Expand
  • 1. Key Laboratory for Urban Underground Engineering of the Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
    2. Beijing Engineering Research Center of Track Structure, Beijing Urban Construction Design and Development Group Co., Ltd., Beijing 100037, China
    3. Urban Operation Safety Research Center, Beijing Academy of Emergency Management Science and Technology, Beijing 101101, China

Received date: 2023-07-28

  Revised date: 2024-02-20

  Accepted date: 2024-03-27

  Online published: 2024-04-10

摘要

常规的弹性解无法对具有强蠕变特性的软岩隧道变形规律提出合理解释.因此,针对软岩隧道施工的时间-空间效应,引入Burgers模型揭示其时空演化规律,并通过数值计算探究不同因素对黏弹性围岩纵向变形规律的影响.同时基于响应面法得到位移释放系数的经验公式,与现场监测和其他理论比较验证了本文方法的可行性.研究结果表明地应力对位移释放系数影响可忽略,Kelvin切变模量、Kelvin黏滞系数、Maxwell切变模量和开挖速度显著影响位移释放系数,而根据延滞时间的不同可分为低延滞系数、中延滞系数和高延滞系数3类;针对时间效应影响型、空间效应影响型和时空效应影响型3种黏弹性围岩纵向变形曲线类型拟合得到相应的经验公式.研究结论可为软岩隧道变形预测提供更简便的方法.

本文引用格式

王嘉琛 , 孟令赞 , 张顶立 , 卢松 , 文明 . 黏弹性围岩纵向变形曲线及其释放系数演化规律[J]. 上海交通大学学报, 2025 , 59(4) : 513 -524 . DOI: 10.16183/j.cnki.jsjtu.2023.350

Abstract

Conventional elastic solutions cannot explain the deformation characteristics of soft rock tunnels exhibiting creep behavior. Therefore, a Burgers model is introduced to demonstrate the space-time effects in the construction period of soft rock tunnel. The influences of different factors on the longitudinal deformation behavior of viscoelastic rock as well as the spatiotemporal evolution patterns have been revealed through numerical simulations. An empirical formula for the displacement release coefficient is derived using the response surface method. The feasibility of the proposed method is validated by comparing the results with on-site monitoring data and other theoretical values. The findings indicate that geostress has a negligible effect on the displacement release coefficient. In constrast, the Kelvin shear modulus, viscosity coefficient, Maxwell shear modulus, and excavation speed significantly affect the displacement release coefficient. According to viscosity time, the hysteresis coefficient can be divided into three categories: low, medium, and high. Empirical formulas are fitted for the longitudinal deformation curve, including time, spatial, and spatiotemporal factors. The research conclusion can provide a more convenient method for predicting the deformation of soft rock tunnels.

参考文献

[1] 侯公羽, 李晶晶. 弹塑性变形条件下围岩-支护相互作用全过程解析[J]. 岩土力学, 2012, 33(4): 961-970.
  HOU Gongyu, LI Jingjing. Analysis of complete process of interaction of surrounding rock and support under elastioplastic deformation condition[J]. Rock and Soil Mechanics, 2012, 33(4): 961-970.
[2] WANG Y, WANG J C, PENG F. Study on the characteristics of surrounding rock and design of backfill material parameters for tunnels passing through giant caverns and underground rivers[J]. Applied Sciences, 2022, 12(8): 3906.
[3] DO D P, TRAN N T, MAI V T, et al. Time-dependent reliability analysis of deep tunnel in the viscoelastic burger rock with sequential installation of liners[J]. Rock Mechanics and Rock Engineering, 2020, 53(3): 1259-1285.
[4] EUGIE K, MURAT K, EMMANUEL K C. Time-dependent solution for non-circular tunnels considering the elasto-viscoplastic rockmass[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104395.
[5] ZHAO N, SHAO Z, WU K, et al. Time-dependent solutions for lined circular tunnels considering rockbolts reinforcement and face advancement effects[J]. International Journal of Geomechanics, 2021, 21(10): 04021179.
[6] GU S C, HE H W, HUANG R B. Stress-strain calculation method of composite lining considering the creep characteristics of tunnel surrounding rock[J]. Advances in Civil Engineering, 2021, 21(10): 7521435.
[7] WANG H N, SONG F, ZHAO T, et al. Solutions for lined circular tunnels sequentially constructed in rheological rock subjected to non-hydrostatic initial stresses[J]. European Journal of Environmental and Civil Engineering, 2022, 26(5): 1834-1866.
[8] ZENG G S, WANG H N, JIANG M J, et al. Analytical solution of displacement and stress induced by the sequential excavation of noncircular tunnels in viscoelastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134: 104429.
[9] CHU Z, WU Z, LIU Q, et al. Analytical solution for lined circular tunnels in deep viscoelastic burgers rock considering the longitudinal discontinuous excavation and sequential installation of liners[J]. Journal of Engineering Mechanics, 2021, 147(4): 04021009.
[10] ALI R K, HADI H, NIMA B. Time-dependent analysis of stress components around lined tunnels with circular configuration considering tunnel advancing rate effects[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104422.
[11] 苏永华, 邹宇恒. 基于Hoek-Brown软化模型的支护结构稳定性分析[J]. 中南大学学报(自然科学版), 2020, 51(2): 453-463.
  SUN Yonghua, ZOU Yuheng. Stability analysis of support structure based on Hoek-Brown strain-softening model[J]. Journal of Central South University(Science and Technology), 2020, 51(2): 453-463.
[12] 谭代明, 漆泰岳, 莫阳春. 考虑时空效应的软弱围岩隧道施工稳定性研究[J]. 水文地质工程地质, 2009, 36(4): 85-89.
  TAN Daiming, QI Taiyue, MO Yangchun. Study on construction stability of soft surrounding rock tunnel considering time-space effect[J]. Hydrogeology and Engineering Geology, 2009, 36(4): 85-89.
[13] 霍晓龙, 陈寿根, 张小明. 唐家山隧道施工特性及时空效应研究[J]. 施工技术, 2012, 41(19): 79-83.
  HUO Xiaolong, CHEN Shougen, ZHANG Xiao-ming. Study on construction characteristic and temporal-spatial effect of Tangjiashan tunnel[J]. Construction Technology, 2012, 41(19): 79-83.
[14] LIU C, ZHANG D, ZHANG S, et al. Interaction analysis between composite supports and rheological rock considering progressive hardening characteristic of shotcrete[J]. Construction and Building Materials, 2023, 374: 130876.
[15] LIU C, ZHANG D, ZHANG S, et al. Long-term mechanical analysis of tunnel structures in rheological rock considering the degradation of primary lining[J]. Underground Space, 2023, 10: 217-232.
[16] LIU C, ZHANG S, ZHANG D, et al. Model tests on progressive collapse mechanism of a shallow subway tunnel in soft upper and hard lower composite strata[J]. Tunnelling and Underground Space Technology, 2023, 131: 104824.
[17] 王嘉琛, 张顶立, 孙振宇, 等. 水平互层围岩隧道破坏机理及其范围预测模型[J]. 力学学报, 2022, 54(10): 2835-2849.
  WANG Jiachen, ZHANG Dingli, SUN Zhenyu, et al. Failure mechanism and scope prediction model of horizontal interbedded surrounding rock tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2835-2849.
[18] 卢伟. 断层破碎带隧道洞周变形时空效应研究[J]. 结构工程师, 2019, 35(3): 236-242.
  LU Wei. Research on the space-time effect of the fault fracture zone with tunnel surrounding rock deformation[J]. Structural Engineers, 2019, 35(3): 236-242.
[19] 左清军, 吴友银, 闫天玺. 特大断面板岩隧道施工期围岩变形时空效应分析[J]. 防灾减灾工程学报, 2018, 38(2): 233-243.
  ZUO Qingjun, WU Youyin, YAN Tianxi. Analysis of time-space effect for surrounding rock deformation in super-large cross section slate tunnel during construction period[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(2): 233-243.
[20] 王建, 袁枫斌, 袁龙. 特大断面砂质板岩隧道V级围岩变形时空效应[J]. 科学技术与工程, 2020, 20(5): 2048-2052.
  WANG Jian, YUAN Fengbin, YUAN Long. Temporal and spatial effects of V-type surrounding rock deformation in extra large section sandy slate tunnel[J]. Science Technology and Engineering, 2020, 20(5): 2048-2052.
[21] 杨成忠, 吴宇健, 王威, 等. 大断面软岩隧道开挖空间效应影响分析[J]. 地下空间与工程学报, 2021, 17(2): 511-519.
  YANG Chengzhong, WU Yujian, WANG Wei, et al. Analysis on influence of spacial effect on excavation of soft rock tunnel with large cross section[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(2): 511-519.
[22] PANET M, GUENOT A. Analysis of convergence behind the face of a tunnel[C]// Tunnelling 82, Proceedings of the 3rd International Symposium. Brighton, UK: IMM, 1982: 197-204.
[23] CORBETTA F, BERNAUD D, MINH D N. Contribution à la méthode convergence-confinement par le principe de la similitude[J]. Revue Fran?aise de Géotechnique, 1991(54): 5-11.
文章导航

/