考虑碳排放权交易的两阶段电力现货市场模式设计
收稿日期: 2023-07-06
修回日期: 2023-08-20
录用日期: 2023-08-28
网络出版日期: 2024-03-29
基金资助
国网内蒙古东部电力有限公司科技项目(526601220045)
Design of Two-Stage Electricity Spot Market Model Considering Carbon Emission Trading
Received date: 2023-07-06
Revised date: 2023-08-20
Accepted date: 2023-08-28
Online published: 2024-03-29
为推进电力行业碳减排进程,助力实现“双碳”目标,在加快建设全国统一电力市场体系的背景下,提出负荷主体参与碳排放权交易的两阶段市场出清模型,以实现降低电力行业碳排放及清洁能源替代的目的.首先,提出基于零和收益-数据包络分析模型的火电机组初始碳配额分配方法,并建立计及碳交易的电力市场出清模式.然后,根据第一阶段市场出清结果利用潮流追踪理论确定各负荷的新能源消纳量,计算出对应的国家核证自愿减排量;在此基础上开启第二阶段碳排放权交易,并根据碳交易结果进行含碳排放量约束的二次电力市场出清.最后,基于改进的IEEE 30节点系统算例分析验证了所提市场模式的有效性.结果显示:所提模式有利于减少火电机组碳排放量,提高新能源市场化消纳比例并降低市场平均电价,为大规模新能源市场化消纳提供了方案.
刘长玺 , 齐国民 , 王继成 , 李天野 , 杨健 , 雷霞 . 考虑碳排放权交易的两阶段电力现货市场模式设计[J]. 上海交通大学学报, 2025 , 59(3) : 342 -353 . DOI: 10.16183/j.cnki.jsjtu.2023.299
To promote the process of carbon emission reduction in the electric power industry and achieve the goal of “carbon peaking and carbon neutrality”, the construction of a unified national power market system is being accelerated. A two-stage market clearing model considering load participation in carbon trading is proposed to reduce carbon emissions and facilitate clean energy substitution in the electricity sector. First, an initial carbon quota allocation method for thermal power units based on zero sum gains-data envelopment analysis is introduced, and the electricity market clearing model considering carbon trading is established. Then, based on the market clearing results from the first stage, the new energy consumption of loads is determined using the power flow tracing theory, and the Chinese certified emission reduction (CCER) is calculated. Following CCER carbon offset rules, the second stage of carbon emission trading is initiated, and the secondary electricity market subject to carbon emission constraints, is cleared based on the carbon trading results. Finally, an analysis using the improved IEEE 30-bus system is conducted to validate the effectiveness of the proposed market model. The results show that the proposed model not only helps reduce the carbon emissions from thermal power units but also increases the market share of new energy consumption and lowers average electricity prices. Additionly, the model provides a viable scheme for the large-scale marketization consumption of new energy.
[1] | 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001. |
LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4001. | |
[2] | 王利兵, 张赟. 中国能源碳排放因素分解与情景预测[J]. 电力建设, 2021, 42(9): 1-9. |
WANG Libing, ZHANG Yun. Factors decomposition and scenario prediction of energy-related CO2 emissions in China[J]. Electric Power Construction, 2021, 42(9): 1-9. | |
[3] | WANG P, LI M. Scenario analysis in the electric power industry under the implementation of the electricity market reform and a carbon policy in China[J]. Energies, 2019, 12(11): 2152. |
[4] | 张菁, 林毓军, 齐晓光, 等. 考虑碳税与碳交易替代效应的电力系统低碳经济调度方法[J]. 电力建设, 2022, 43(6): 1-11. |
ZHANG Jing, LIN Yujun, QI Xiaoguang, et al. Low-carbon economic dispatching method for power system considering the substitution effect of carbon tax and carbon trading[J]. Electric Power Construction, 2022, 43(6): 1-11. | |
[5] | 潘崇超, 侯孝旺, 金泰, 等. 计及阶梯碳交易和可再生能源不确定性的综合能源系统低碳研究[J]. 电测与仪表, 2024, 61(10): 8-16. |
PAN Chongchao, HOU Xiaowang, JIN Tai, et al. Low carbon research on integrated energy system considering the tiered carbon trading and the uncertainties of renewable energy[J]. Electrical Measurement & Instrumentation, 2024, 61(10): 8-16. | |
[6] | 李国庆, 王冲, 雷顺波, 等. 考虑碳捕集技术的电力系统双层优化配置[J]. 电力自动化设备, 2023, 43(1): 25-31. |
LI Guoqing, WANG Chong, LEI Shunbo, et al. Bi-level optimal allocation of power system considering carbon capture technology[J]. Electric Power Automation Equipment, 2023, 43(1): 25-31. | |
[7] | 王文彬, 郑蜀江, 范瑞祥, 等. “双碳” 背景下微网分布式电能交易绩效评价指标与方法[J]. 上海交通大学学报, 2022, 56(3): 312-324. |
WANG Wenbin, ZHENG Shujiang, FAN Ruixiang, et al. Performance evaluation index and method of micro-grid distributed electricity trading under the background of “carbon peaking and carbon neutrality”[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 312-324. | |
[8] | 刘明涛, 谢俊, 张秋艳, 等. 碳交易环境下含风电电力系统短期生产模拟[J]. 上海交通大学学报, 2021, 55(12): 1598-1607. |
LIU Mingtao, XIE Jun, ZHANG Qiuyan, et al. Short-term production simulation of power system containing wind power under carbon trading environment[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1598-1607. | |
[9] | 彭思佳, 邢海军, 成明洋. 多重不确定环境下考虑阶梯型碳交易的虚拟电厂低碳经济调度[J]. 上海交通大学学报, 2023, 57(12): 1571-1582. |
PENG Sijia, XING Haijun, CHENG Mingyang. Low carbon economic dispatch of virtual power plants considering ladder-type carbon trading in multiple uncertainties[J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1571-1582. | |
[10] | 刘铠诚, 孙嘉赣, 周任军, 等. 碳市场下火电统一碳排放基准与减排效应分析[J]. 电力建设, 2018, 39(1): 113-118. |
LIU Kaicheng, SUN Jiagan, ZHOU Renjun, et al. A unified carbon emission benchmark for fossil-fueled units and its effect on carbon emission reduction in carbon market[J]. Electric Power Construction, 2018, 39(1): 113-118. | |
[11] | EBERLE A L, HEATH G A. Estimating carbon dioxide emissions from electricity generation in the United States: How sectoral allocation may shift as the grid modernizes[J]. Energy Policy, 2020, 140: 111324. |
[12] | 潘险险, 余梦泽, 隋宇, 等. 计及多关联因素的电力行业碳排放权分配方案[J]. 电力系统自动化, 2020, 44(1): 35-42. |
PAN Xianxian, YU Mengze, SUI Yu, et al. Allocation scheme of carbon emission rights for power industry considering multiple correlated factors[J]. Automation of Electric Power Systems, 2020, 44(1): 35-42. | |
[13] | YU A Y, YOU J X, RUDKIN S, et al. Industrial carbon abatement allocations and regional collaboration: re-evaluating China through a modified data envelopment analysis[J]. Applied Energy, 2019, 233: 232-243. |
[14] | 尚楠, 陈政, 卢治霖, 等. 电力市场、碳市场及绿证市场互动机理及协调机制[J]. 电网技术, 2023, 47(1): 142-154. |
SHANG Nan, CHEN Zheng, LU Zhilin, et al. Interaction principle and cohesive mechanism between electricity market, carbon market and green power certificate market[J]. Power System Technology, 2023, 47(1): 142-154. | |
[15] | 董宏伟, 秦光宇, 王玲湘, 等. 新电改下可再生能源衍生品交易研究[J]. 价格理论与实践, 2019(3): 93-96. |
DONG Hongwei, QIN Guangyu, WANG Lingxiang, et al. Research on trading of renewable energy derivatives market under the new electricity reform[J]. Price: Theory & Practice, 2019(3): 93-96. | |
[16] | 赵麟, 李亚鹏, 靳晓雨, 等. 考虑CCER机制的碳-电耦合市场水火电协同竞价模型[J]. 电力系统自动化, 2023, 47(21): 12-24. |
ZHAO Lin, LI Yapeng, JIN Xiaoyu, et al. Coordinated bidding model of hydro-thermal power in carbon-electricity coupled market considering Chinese certified emission reduction mechanism[J]. Automation of Electric Power Systems, 2023, 47(21): 12-24. | |
[17] | 张宁, 庞军, 冯相昭. 全国碳市场引入配额拍卖机制的经济影响: 基于CGE模型的分析[J]. 中国环境科学, 2022, 42(4): 1901-1911. |
ZHANG Ning, PANG Jun, FENG Xiangzhao. The economic impacts of introducing auction into carbon allowance allocation mechanism in the national carbon market: Simulation based on CGE model[J]. China Environmental Science, 2022, 42(4): 1901-1911. | |
[18] | 赵长红, 张明明, 吴建军, 等. 碳市场和电力市场耦合研究[J]. 中国环境管理, 2019, 11(4): 105-112. |
ZHAO Changhong, ZHANG Mingming, WU Jianjun, et al. The coupling study on carbon market and power market[J]. Chinese Journal of Environmental Management, 2019, 11(4): 105-112. | |
[19] | 帅云峰, 周春蕾, 李梦, 等. 美国碳市场与电力市场耦合机制研究: 以区域温室气体减排行动(RGGI)为例[J]. 电力建设, 2018, 39(7): 41-47. |
SHUAI Yunfeng, ZHOU Chunlei, LI Meng, et al. Coupling mechanism of U.S. carbon market and electricity market: A case study of regional greenhouse gas initiative[J]. Electric Power Construction, 2018, 39(7): 41-47. | |
[20] | 张宁, 庞军. 全国碳市场引入CCER交易及抵销机制的经济影响研究[J]. 气候变化研究进展, 2022, 18(5): 622-636. |
ZHANG Ning, PANG Jun. The economic impacts of introducing CCER trading and offset mechanism into the national carbon market of China[J]. Climate Change Research, 2022, 18(5): 622-636. | |
[21] | 孙晓聪, 丁一, 包铭磊, 等. 考虑发电商多时间耦合决策的碳-电市场均衡分析[J]. 电力系统自动化, 2023, 47(21): 1-11. |
SUN Xiaocong, DING Yi, BAO Minglei, et al. Carbon-electricity market equilibrium analysis considering multi-time coupling decision of power producers[J]. Automation of Electric Power Systems, 2023, 47(21): 1-11. | |
[22] | 杨威, 龚学良, 曾智健, 等. 碳排放交易市场机制对电力市场的影响:基于碳价需求响应的电力市场用户行为分析[J]. 南方电网技术, 2022, 16(8): 59-67. |
YANG Wei, GONG Xueliang, ZENG Zhijian, et al. Impacts of ETS mechanism on electricity market: Behavior analysis of market customers based on carbon-oriented demand response[J]. Southern Power System Technology, 2022, 16(8): 59-67. | |
[23] | 朱月尧, 祁佟, 吴星辰, 等. 计及实时碳减排的产消群价格型需求响应机制[J]. 上海交通大学学报, 2023, 57(4): 452-463. |
ZHU Yueyao, QI Tong, WU Xingchen, et al. Price-based demand response mechanism of prosumer groups considering real-time carbon emission reduction[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 452-463. | |
[24] | 胡东滨, 彭丽娜, 陈晓红. 配额分配方式对不同区域碳交易市场运行效率影响研究[J]. 科技管理研究, 2018, 38(19): 240-246. |
HU Dongbin, PENG Lina, CHEN Xiaohong. Study on effect to operational efficiency of carbon trading market in different regions by quota allocation mode[J]. Science & Technology Management Research, 2018, 38(19): 240-246. | |
[25] | 冯青, 吴志彬, 徐玖平. 基于投入产出规模的省际碳排放配额分配研究[J]. 中国管理科学, 2023, 31(3): 268-276. |
FENG Qing, WU Zhibin, XU Jiuping. Research on inter-provincial carbon emission allowance allocation based on input-output scale[J]. Chinese Journal of Management Science, 2023, 31(3): 268-276. | |
[26] | 王心昊, 蒋艺璇, 陈启鑫, 等. 可交易减排价值权证比较分析和衔接机制研究[J]. 电网技术, 2023, 47(2): 594-603. |
WANG Xinhao, JIANG Yixuan, CHEN Qixin, et al. On tradeable certificates of emissions reduction and their interactions[J]. Power System Technology, 2023, 47(2): 594-603. | |
[27] | 马燕峰, 杨小款, 赵书强, 等. 基于潮流转移和追踪的含风电电力系统运行风险评估[J]. 电力自动化设备, 2021, 41(1): 77-85. |
MA Yanfeng, YANG Xiaokuan, ZHAO Shuqiang, et al. Assessment of operation risk for power system containing wind power based on power flow transferring and tracing[J]. Electric Power Automation Equipment, 2021, 41(1): 77-85. |
/
〈 |
|
〉 |