新型电力系统与综合能源

考虑行驶特性的电动汽车充电站联合电储能系统最优规划

  • 韩一鸣 ,
  • 贺彬 ,
  • 杨博 ,
  • 李嘉乐
展开
  • 昆明理工大学 电力工程学院, 昆明 650500
韩一鸣(1993—),讲师,研究方向为人工智能在电力系统中的应用.
杨 博,教授,博士生导师;E-mail:yangbo_ac@outlook.com.

收稿日期: 2023-12-15

  修回日期: 2024-01-12

  录用日期: 2024-03-05

  网络出版日期: 2024-03-19

基金资助

国家自然科学基金资助项目(61963020);国家自然科学基金资助项目(62263014);云南省应用基础研究计划项目-面上项目(202201AT070857)

Optimal Planning of Electric Vehicle Charging Stations Combined with Battery Energy Storage Systems Considering Driving Characteristics

  • HAN Yiming ,
  • HE Bin ,
  • YANG Bo ,
  • LI Jiale
Expand
  • Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China

Received date: 2023-12-15

  Revised date: 2024-01-12

  Accepted date: 2024-03-05

  Online published: 2024-03-19

摘要

随着国内电动汽车保有量的不断提升,为了满足电动汽车日益增长的充电需求,电动汽车充电站(EVCS)开始大量接入配电网,给配电网的稳定性、安全性和经济性带来前所未有的挑战.为了缓解EVCS带来配电网冲击的同时保证投资者和电动汽车用户的利益,提出一种考虑电动汽车用户行为特性的EVCS联合电池储能系统(BESS)的多目标规划模型.该模型以最小化EVCS和BESS综合成本、用户等待时间和系统电压波动为目标,通过规划EVCS及BESS实现经济性与稳定性的最佳权衡;并采用非支配排序遗传算法(NSGA-III)分别在扩展的IEEE-33节点测试系统与昆明市呈贡区大学城上进行验证.仿真结果表明:在IEEE-33节点测试系统,与未配置BESS时相比,电压波动与系统网损分别下降36.73%和35.41%,有效提高了配网的稳定性与经济性.

本文引用格式

韩一鸣 , 贺彬 , 杨博 , 李嘉乐 . 考虑行驶特性的电动汽车充电站联合电储能系统最优规划[J]. 上海交通大学学报, 2025 , 59(11) : 1720 -1731 . DOI: 10.16183/j.cnki.jsjtu.2023.629

Abstract

With the continuous increase in the number of electric vehicles (EVs) in China, EV charging stations (EVCS) are becoming extensively connected to distribution networks to meet the growing charging demand, which poses unprecedented challenges to the stability, safety, and economy of distribution networks. To reduce the impact of EVCS on distribution networks while ensuring the interests of investors and EV users, this paper proposes a multi-objective planning model of EVCS combined battery energy storage system (BESS) which considers the behavioral characteristics of EV users, aiming to minimize the comprehensive cost of EVCS and BESS, waiting time of users, and system voltage fluctuations to achieve the best balance between the economy and stability by planning for EVCS and BESS. Meanwhile, the non-dominated sorting genetic algorithm III (NSGA-III) is used to verify the model on the extended IEEE-33 node testing system and the university town in Chenggong, Kunming. The simulation results show that in the IEEE-33 node test system, compared with the case without BESS configuration, the voltage fluctuation and system network loss decreases by 36.73% and 35.41%, respectively, effectively improving the stability and economy of the distribution network.

参考文献

[1] 王育飞, 刘德宾, 薛花, 等. 耦合氢能的光储充电站多目标优化配置策略[J]. 电力自动化设备, 2023, 43(12): 101-108.
  WANG Yufei, LIU Debin, XUE Hua, et al. Multi-objective optimal configuration strategy of photovoltaic-energy storage charging station coupled with hydrogen energy[J]. Electric Power Automation Equipment, 2023, 43(12): 101-108.
[2] 付卓铭, 胡俊杰, 马文帅, 等. 规模化电动汽车参与电力系统二次调频研究综述[J]. 电力建设, 2023, 44(2): 1-14.
  FU Zhuoming, HU Junjie, MA Wenshuai, et al. Review of research on participation of numerous electric vehicles in power system secondary frequency-regulation service[J]. Electric Power Construction, 2023, 44(2): 1-14.
[3] 李玲, 曹锦业, TOMIN Nikita, 等. 计及电动汽车接入的区域综合能源系统双层日前协调优化调度[J]. 电力建设, 2023, 44(5): 23-33.
  LI Ling, CAO Jinye, TOMIN Nikita, et al. Bi-level coordinated day-ahead optimal dispatch of regional integrated energy system considering the integrations of electric vehicles[J]. Electric Power Construction, 2023, 44(5): 23-33.
[4] 杨子昊, 娄柯, 蒋卓伟. 考虑需求响应的微电网优化调度[J]. 昆明理工大学学报(自然科学版), 2023, 48(4): 74-86.
  YANG Zihao, LOU Ke, JIANG Zhuowei. Optimal scheduling of microgrid considering demand response[J]. Journal of Kunming University of Science & Technology (Natural Sciences), 2023, 48(4): 74-86.
[5] 刘东奇, 张曦, 钱奕衡. 电动汽车集群充放电演化博弈协同策略[J]. 电力系统保护与控制, 2023, 51(16): 84-93.
  LIU Dongqi, ZHANG Xi, QIAN Yiheng. Evolutionary game coordination strategy of electric vehicle cluster charging and discharging[J]. Power System Protection & Control, 2023, 51(16): 84-93.
[6] YANG B, LI J L, SHU H C, et al. Recent advances of optimal sizing and location of charging stations: A critical overview[J]. International Journal of Energy Research, 2022, 46(13): 17899-17925.
[7] 张美霞, 张倩倩, 杨秀, 等. 基于交通-电力均衡耦合的电动汽车快充站与配电网联合规划[J]. 电力系统保护与控制, 2023, 51(11): 51-63.
  ZHANG Meixia, ZHANG Qianqian, YANG Xiu, et al. Joint planning of electric vehicle fast charging stations and distribution network based on a traffic-electricity equilibrium coupling model[J]. Power System Protection & Control, 2023, 51(11): 51-63.
[8] 王华莹, 李勇, 朱辉, 等. 考虑配电网负荷的电动汽车充电站规划[J]. 电力系统及其自动化学报, 2022, 34(11): 134-141.
  WANG Huaying, LI Yong, ZHU Hui, et al. Planning of electric vehicle charging stations considering distribution network load[J]. Proceedings of the CSU-EPSA, 2022, 34(11): 134-141.
[9] ZHANG H C, MOURA S J, HU Z C, et al. PEV fast-charging station siting and sizing on coupled transportation and power networks[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2595-2605.
[10] 左逸凡, 李伟豪, 杨伟. 考虑充电负荷时空分布特性的EV充电站规划[J]. 电测与仪表, 2025, 62(3): 1-9.
  ZUO Yifan, LI Weihao, YANG Wei. EV charging station planning considering space-time distribution characteristics of charging load[J]. Electrical Measurement & Instrumentation, 2025, 62(3): 1-9.
[11] 侯慧, 唐俊一, 王逸凡, 等. 城区电动汽车充电站布局规划研究[J]. 电力系统保护与控制, 2022, 50(14): 181-187.
  HOU Hui, TANG Junyi, WANG Yifan, et al. Layout planning of electric vehicle charging stations in urban areas[J]. Power System Protection & Control, 2022, 50(14): 181-187.
[12] 景小敏, 邢洁, 郭建豪, 等. 基于多目标优化的电动汽车充电站规划研究[J]. 电气应用, 2022, 41(6): 55-62.
  JING Xiaomin, XING Jie, GUO Jianhao, et al. Research on electric vehicle charging station planning based on multi-objective optimization[J]. Application Research, 2022, 41(6): 55-62.
[13] 张美霞, 徐立成, 杨秀, 等. 基于电动汽车充电需求时空分布特性的充电站规划研究[J]. 电网技术, 2023, 47(1): 256-265.
  ZHANG Meixia, XU Licheng, YANG Xiu, et al. Planning of charging stations based on spatial and temporal distribution characteristics of electric vehicle charging demand[J]. Power System Technology, 2023, 47(1): 256-265.
[14] LIU J P, ZHANG T X, ZHU J, et al. Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration[J]. Energy, 2018, 164: 560-574.
[15] 曹佳佳, 王淳, 霍崇辉, 等. 考虑配电网负荷波动和电压偏移的充电站优化规划[J]. 电力科学与技术学报, 2021, 36(4): 12-19.
  CAO Jiajia, WANG Chun, HUO Chonghui, et al. Optimal planning of electric vehicle charging stations considering the load fluctuation and voltage offset of distribution network[J]. Journal of Electric Power Science & Technology, 2021, 36(4): 12-19.
[16] MOSTAPHA K H. NSGA-III:Non-dominated sorting genetic algorithm, the third version—MATLAB implementation[EB/OL].(2020-12-12)[2023-12-03]. https://yarpiz.com/456/ypea126-nsga3.
[17] GUO C X, LIU D Y, GENG W, et al. Modeling and analysis of electric vehicle charging load in residential area[C]// 2019 4th International Conference on Power and Renewable Energy. Chengdu, China: IEEE, 2019: 394-402.
[18] GAO Q, ZHU T, ZHOU W J, et al.Charging load forecasting of electric vehicle based on Monte Carlo and deep learning[C]//2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing, China: IEEE, 2019: 1309-1314.
[19] YANG J, DONG J, HU L. A data-driven optimization-based approach for siting and sizing of electric taxi charging stations[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 462-477.
[20] XIAO D, AN S, CAI H, et al. An optimization model for electric vehicle charging infrastructure planning considering queuing behavior with finite queue length[J]. Journal of Energy Storage, 2020, 29: 101317.
[21] WANG H, ZHAO D, CAI Y T, et al. Taxi trajectory data based fast-charging facility planning for urban electric taxi systems[J]. Applied Energy, 2021, 286: 116515.
[22] LI J L, YANG B, HUANG J X, et al. Optimal planning of electricity-hydrogen hybrid energy storage system considering demand response in active distribution network[J]. Energy, 2023, 273: 127142.
[23] YANG Y Q, BREMNER S, MENICTAS C, et al. Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review[J]. Renewable & Sustainable Energy Reviews, 2022, 167: 112671.
[24] CONG T N. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312.
[25] LIU J, CAO S L, CHEN X, et al. Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage[J]. Applied Energy, 2021, 281: 116038.
[26] HARVEY L D D. Clarifications of and improvements to the equations used to calculate the levelized cost of electricity (LCOE), and comments on the weighted average cost of capital (WACC)[J]. Energy, 2020, 207: 118340.
[27] 薛金花, 叶季蕾, 陶琼, 等. 采用全寿命周期成本模型的用户侧电池储能经济可行性研究[J]. 电网技术, 2016, 40(8): 2471-2476.
  XUE Jinhua, YE Jilei, TAO Qiong, et al. Economic feasibility of user-side battery energy storage based on whole-life-cycle cost model[J]. Power System Technology, 2016, 40(8): 2471-2476.
[28] CUI Z H, CHANG Y, ZHANG J J, et al. Improved NSGA-III with selection-and-elimination operator[J]. Swarm & Evolutionary Computation, 2019, 49: 23-33.
[29] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
[30] 姜惠兰, 安星, 王亚微, 等. 基于改进NSGA2算法的考虑风机接入电能质量的多目标电网规划[J]. 中国电机工程学报, 2015, 35(21): 5405-5411.
  JIANG Huilan, AN Xing, WANG Yawei, et al. Improved NSGA2 algorithm based multi-objective planning of power grid with wind farm considering power quality[J]. Proceedings of the CSEE, 2015, 35(21): 5405-5411.
[31] 李嘉乐, 杨博, 胡袁炜骥, 等. 考虑需求侧响应的电-氢混合储能系统选址定容[J]. 电网技术, 2023, 47(9): 3698-3709.
  LI Jiale, YANG Bo, HU Yuanweiji, et al. Location and capacity planning of electricity hydrogen hybrid energy storage system considering demand response[J]. Power System Technology, 2023, 47(9): 3698-3709.
文章导航

/