裂纹形态对SG夹层玻璃开裂后硬化效应的影响机制
收稿日期: 2023-10-31
修回日期: 2024-01-16
录用日期: 2024-02-19
网络出版日期: 2024-03-02
基金资助
国家自然科学基金(52078293)
Influence and Mechanism of Crack Morphology on Post-Fracture Stiffening Effect of SG-laminated Glass
Received date: 2023-10-31
Revised date: 2024-01-16
Accepted date: 2024-02-19
Online published: 2024-03-02
SG离子型中间膜夹层热钢化玻璃(简称SG夹层玻璃)在拉伸硬化效应作用下,破坏后仍具有一定的残余强度,裂纹形态参数(如碎片密度和碎片分布)对其后破坏性能有显著影响.准确评估和预测夹层玻璃开裂后的性能,是提升其成本和性能综合效益的重要基础.目前,裂纹形态对夹层玻璃开裂后硬化效应及影响机制的研究尚显不足.首先通过SG夹层玻璃随机裂纹拉伸试验发现,碎片密度通过影响应力路径对夹层玻璃的开裂后性能产生影响,表现为抗拉强度和等效刚度随碎片密度增大分别呈线性和指数下降.随后,基于试验结果提出有效黏结区域假设,并建立精细化有限元模型,实现了对夹层玻璃开裂后抗拉性能的准确预测,同时探讨了碎片层交错程度对夹层玻璃开裂后硬化效应的影响规律.
彭沈楠 , 杨健 , 王星尔 , 陆敏铖 , 朱禹翰 . 裂纹形态对SG夹层玻璃开裂后硬化效应的影响机制[J]. 上海交通大学学报, 2025 , 59(8) : 1123 -1132 . DOI: 10.16183/j.cnki.jsjtu.2023.549
The effect of tension stiffening allows SG-laminated tempered glass to preserve specific post-fracture mechanical performance, which is significantly influenced by crack morphology, including fragment density and distribution. Accurately evaluating and predicting the post-fracture performance of laminated glass is essential for balancing cost and performance. However, limited work has addressed how crack morphology affects the stiffening behavior of laminated glass after fracture. In this paper, a series of random-cracked tensile tests on SG-laminated tempered glass is performed. The results reveal that the fragment density influences the post-fracture performance of SG-laminated glass by affecting the stress trajectory, and the tensile strength and equivalent stiffness decrease linearly and exponentially, respectively, with increasing fragment density. Afterwards, according to the experimental results, a hypothesis of the effective bonding is proposed and an improved finite element model is then developed. The proposed model accurately predicts the post-fracture tensile performance of laminated glass. Finally, the impact of fragment offset on the stiffening effect is discussed.
| [1] | O’REGAN C. Structural use of glass in buildings[M]. London, UK: Institution of Structural Engineers, 2014. |
| [2] | 黄小坤, 段树坤, 刘强, 等. 玻璃结构研究进展与工程实践[J]. 建筑结构学报, 2020, 41(6): 1-20. |
| HUANG Xiaokun, DUAN Shukun, LIU Qiang, et al. Advances and engineering practice in glass structures[J]. Journal of Building Structures, 2020, 41(6): 1-20. | |
| [3] | WANG X, YANG J, LIU Q, et al. A comparative study of numerical modelling techniques for the fracture of brittle materials with specific reference to glass[J]. Engineering Structures, 2017, 152: 493-505. |
| [4] | HOOPER P, SUKHRAM R, BLACKMAN B, et al. On the blast resistance of laminated glass[J]. International Journal of Solids and Structures, 2012, 49(6): 899-918. |
| [5] | WANG X, YANG J, CHONG W, et al. Post-fracture performance of laminated glass panels under consecutive hard body impacts[J]. Composite Structures, 2020, 254: 112777. |
| [6] | WANG X, MENG Y, YANG J, et al. Optimal kernel extreme learning machine model for predicting the fracture state and impact response of laminated glass panels[J]. Thin-Walled Structures, 2021, 162: 107541. |
| [7] | BARALDI D, CECCHI A, FORABOSCHI P. Broken tempered laminated glass: non-linear discrete element modeling[J]. Composite Structures, 2016, 140: 278-295. |
| [8] | 刘炘炜, 杨健, 王星尔, 等. 冲击致损的夹层玻璃板开裂后的静载强度[J]. 上海交通大学学报, 2020, 54(3): 227-238. |
| LIU Xinwei, YANG Jian, WANG Xing’er, et al. Post-breakage strength of laminated glass panel cracked by impact[J]. Journal of Shanghai Jiao Tong University, 2020, 54(3): 227-238. | |
| [9] | DIN. Glass in building: prEN 13474-1-1999[S]. Germany: DIN, 1999. |
| [10] | FORABOSCHI P. Hybrid laminated-glass plate: Design and assessment[J]. Composite Structures, 2013, 106: 250-263. |
| [11] | SAMIEIAN M A, CORMIE D, SMITH D, et al. Temperature effects on laminated glass at high rate[J]. International Journal of Impact Engineering, 2018, 111: 177-186. |
| [12] | BIOLZI L, CATTANEO S, ORLANDO M, et al. Post-failure behavior of laminated glass beams using different interlayers[J]. Composite Structures, 2018, 202: 578-589. |
| [13] | BIOLZI L, ORLANDO M, PISCITELLI L R, et al. Static and dynamic response of progressively damaged ionoplast laminated glass beams[J]. Composite Structures, 2016, 157: 337-347. |
| [14] | YANG J, WANG Y, WANG X, et al. Local bridging effect of fractured laminated glass with EVA based hybrid interlayers under weathering actions[J]. Construction and Building Materials, 2022, 314: 125595. |
| [15] | WANG X, YANG J, PENG S, et al. Microscale discrete element model for simulating bridging behavior of fractured glass laminates[C]// Challenging Glass Conference Proceedings. Gent, Belgium: Challenging Glass Conference, 2022: 1-11. |
| [16] | 朱禹翰, 杨健, 王星尔. 物理钢化玻璃裂纹形态试验及Voronoi形态表征[J]. 硅酸盐学报, 2022, 50(2): 482-491. |
| ZHU Yuhan, YANG Jian, WANG Xing’er. Fracture morphology of tempered glass and Voronoi tessellation-based regeneration[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 482-491. | |
| [17] | ZHU Y, YANG J, WANG X, et al. Morphological characterization and reconstruction of fractured heat-treated glass[J]. Journal of Non-Crystalline Solids, 2023, 616: 122455. |
| [18] | 陈素文, 陈志飞, 陈星. 中高应变率下夹层玻璃破碎后力学性能试验研究[J]. 建筑结构学报, 2023, 44(3): 102-112. |
| CHEN Suwen, CHEN Zhifei, CHEN Xing. Experimental study on post-fractured performance of laminated glass at medium-to-high strain rates[J]. Journal of Building Structures, 2023, 44(3): 102-112. | |
| [19] | 王星尔, 杨健, 王翰坤. 夹层热钢化玻璃裂纹形态表征及开裂后力学行为[J]. 硅酸盐学报, 2019, 47(8): 1039-1046. |
| WANG Xing’er, YANG Jian, WANG Hankun. Fracture morphology characterization and post-breakage behavior of laminated thermally tempered Glass[J]. Journal of the Chinese Ceramic Society, 2019, 47(8): 1039-1046. | |
| [20] | YANG J, ZHAO C, ZHANG Y, et al. Constitutive models for temperature-, strain rate-and time-dependent behaviors of ionomers in laminated glass[J]. Journal of Materials Science, 2023, 58(8): 3608-3024. |
/
| 〈 |
|
〉 |