高功率密度表嵌式磁极偏移永磁电动机转矩性能提升
收稿日期: 2023-10-26
修回日期: 2024-01-03
录用日期: 2024-01-17
网络出版日期: 2024-02-20
基金资助
国家自然科学基金(52007115)
Torque Improvement for High Power Density Machines with Shifted Surface-Inserted Permanent Magnets
Received date: 2023-10-26
Revised date: 2024-01-03
Accepted date: 2024-01-17
Online published: 2024-02-20
高功率密度是航空飞行器用电动机关键性能需求,电动机转子结构对功率密度指标具有显著影响.采用磁极偏移结构提高永磁同步电动机功率密度和永磁体利用率.针对150 kW、12 000 r/min额定工作点,基于遗传优化算法开展表贴式、表嵌式以及表嵌式磁极偏移结构永磁同步电动机的优化设计和性能对比研究,并在表嵌式磁极偏移结构基础上对比不同填充材料、磁极偏移角的影响.结果表明,表嵌式磁极偏移结构电动机相比于表贴式结构电动机,可以将功率密度提高2.1%,永磁体用量减小17.6%,转矩脉动降低11.6%,具有良好的应用潜力.
关键词: 高功率密度电动机; 永磁同步电动机; 磁极偏移结构; NSGA-II优化算法
栗大林 , 华浩 , 李然 , 许少伦 , 齐文娟 . 高功率密度表嵌式磁极偏移永磁电动机转矩性能提升[J]. 上海交通大学学报, 2025 , 59(9) : 1237 -1248 . DOI: 10.16183/j.cnki.jsjtu.2023.545
High power density is critical to high-performance electrical machines in aviation, and the rotor structures of the machines play an essential role. This paper focuses on the permanent magnet (PM)-shifting rotor to enhance the power density and PM utilization ratio of PM synchronous machines. Aimed at the rated operation point with a power of 150 kW and a speed of 12 000 r/min, global optimizations using the non-dominated sorting genetic algorithm II (NSGA-II) are applied individually to the surface-mounted, surface-inserted, and surface-inserted-shifted PM machines. Then, the three optimal machines are comprehensively evaluated and compared. Additionly, a comparative investigation is conducted on the surface-inserted-shifted PM machines with different structures and different PM shifting angles. The results reveal that surface-inserted-shifted PM machines achieve a 2.1% increase in power density, a 17.6% reduction in PM usage, and an 11.6% decrease in torque ripple compared to conventional surface-mounted PM machines, indicating strong potential for aircraft applications.
| [1] | MADONNA V, PAOLO G, GALEA M. Electrical power generation in aircraft: Review challenges and opportunities[J]. IEEE Transactions on Transportation Electrification, 2018, 4(3): 646-659. |
| [2] | GERADA C, GALEA M, KLADAS G. Electrical machines for aerospace applications[C]// IEEE Workshop on Electrical Machines Design, Control and Diagnosis. Italy: IEEE, 2015: 79-84. |
| [3] | SAYED E, ABDALMAGID M, PIETRINI G, et al. Review of electric machines in more-/hybrid-/turbo-electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2976-3005. |
| [4] | 张鲁华, 郭家虎, 蔡旭, 等. 恒定交流励磁时双馈感应发电机的短路电流[J]. 上海交通大学学报, 2010, 44(7): 1000-1004. |
| ZHANG Luhua, GUO Jiahu, CAI Xu, et al. Fault currents of the doubly fed induction generator with constant AC excitation[J]. Journal of Shanghai Jiao Tong University, 2010, 44(7): 1000-1004. | |
| [5] | EL-REFAIE A, OSAMA M. High specific power electrical machines: A system perspective[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 88-93. |
| [6] | 张卓然, 陆嘉伟, 张伟秋, 等. 飞机电推进系统高效能电机及其驱动控制技术[J]. 中国电机工程学报, 2024, 44(16): 6610-6632. |
| ZHANG Zhuoran, LU Jiawei, ZHANG Weiqiu, et al. High-performance electric machine and drive technologies for aircraft electric propulsion systems[J]. Proceedings of the CSEE, 2024, 44(16): 6610-6632. | |
| [7] | FILIPENKO M. HTS-Technology for hybrid electric aircraft[C]// European Cryogenic Days 2017. Karlsruhe, Germany: KIT, 2017. |
| [8] | GOLOVANOV D, GERAD D, SALA D. et al. 4 MW class high power density generator for future hybrid-electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2952-2964. |
| [9] | WANG S, ZHANG S, MA S. An energy efficiency optimization method for fixed pitch propeller electric aircraft propulsion systems[J]. IEEE Access, 2019, 7: 159986-159993. |
| [10] | 范振伟, 杨凤田, 项松, 等. 我国电动飞机发展现状及建议[J]. 航空科学技术, 2019, 30(11): 18-21. |
| FAN Zhenwei, YANG Fengtian, XIANG Song, et al. Present situation and advice of electric aircraft development in China[J]. Aeronautical Science & Technology, 2019, 30(11): 18-21. | |
| [11] | 侯珏, 姚栋伟, 吴锋, 等. 混合励磁电机的电动汽车增程器控制策略[J]. 上海交通大学学报, 2021, 55(2): 206-212. |
| HOU Jue, YAO Dongwei, WU Feng, et al. Control strategy for electric vehicle range-extender based on hybrid excitation generator[J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 206-212. | |
| [12] | 魏长河, 王忠, 梁磊, 等. 集成发电机/起动机技术混合动力的动态转矩协调控制策略[J]. 上海交通大学学报, 2010, 44(10): 1356-1361. |
| WEI Changhe, WANG Zhong, LIANG Lei, et al. Dynamic torque coordination control strategy of integrated starter alternator damper (ISAD) hybrid[J]. Journal of Shanghai Jiao Tong University, 2010, 44(10): 1356-1361. | |
| [13] | BIANCHI N, BOLOGNANI S. Design techniques for reducing the cogging torque in surface-mounted PM motors[J]. IEEE Transactions on Industry Applications, 2002, 38(5): 1259-1265. |
| [14] | 杜鑫鑫. 基于磁极偏移的表嵌式永磁电机转矩脉动抑制方法研究[D]. 镇江: 江苏大学, 2018. |
| DU Xinxin. Research on the method of reducing torque ripple for surface-insert permanent magnet motor based on magnet shifting[D]. Zhenjiang: Jiang-su University, 2018. | |
| [15] | DU X, LIU G, CHEN Q, et al. Optimal design of an inset PM motor with assisted barriers and magnet shifting for improvement of torque characteristics[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4. |
| [16] | QI J, ZHU Z, YAN L, et al. Suppression of torque ripple for consequent pole PM machine by asymmetric pole shaping method[J]. IEEE Transactions on Industry Applications, 2022, 58(3): 3545-3557. |
| [17] | ALSAWALHI J. An asymmetric salient permanent magnet synchronous machine for wide constant power speed range applications[D]. USA: Purdue University, 2014. |
| [18] | ZHAO W, LIPO T, KWON B. Optimal design of a novel asymmetrical rotor structure to obtain torque and efficiency improvement in surface inset PM motors[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. |
| [19] | 梁新宇. 凸极偏置型表面镶嵌式永磁同步电机设计与优化[D]. 济南: 山东大学, 2022. |
| LIANG Xinyu. Design and optimization of salient pole offset surface insert permanent magnet synchronous motor[D]. Jinan: Shandong University, 2022. | |
| [20] | ZHU Z, XIAO Y. Novel magnetic-field-shifting techniques in asymmetric rotor pole interior PM machines with enhanced torque density[J]. IEEE Transactions on Magnetics, 2021, 58(2): 1-10. |
| [21] | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
| [22] | 孙鸿强, 张占月, 方宇强. 基于NSGA-II算法的编队卫星重构策略[J]. 上海交通大学学报, 2021, 55(3): 320-330. |
| SUN Hongqiang, ZHANG Zhanyue, FANG Yuqiang. Formation satellite reconstruction strategy based on NSGA-II algorithm[J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 320-330. | |
| [23] | ZHU Z, ZHENG Y, LIU Y, et al. Effect of end-winding on electromagnetic performance of fractional slot and vernier PM machines with different slot/pole number combinations and winding configurations[J]. IEEE Access, 2022, 10: 49934-49955. |
| [24] | VERMA S, PANT M, SNASEL V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems[J]. IEEE Access, 2021, 9: 57757-57791. |
/
| 〈 |
|
〉 |