船舶海洋与建筑工程

单层网壳结构的局部加肋渐进式拓扑优化方法

  • 王润谷 ,
  • 董骁 ,
  • 龚景海
展开
  • 上海交通大学 船舶海洋与建筑工程学院,上海 200240
王润谷(1997—),硕士生,从事空间结构拓扑优化研究.
龚景海,研究员,博士生导师;E-mail:gongjh@sjtu.edu.cn.

收稿日期: 2023-09-25

  修回日期: 2023-12-13

  录用日期: 2024-01-17

  网络出版日期: 2024-02-06

Evolutionary Topological Optimization Method for Local Rib Addition in Single-Layer Shell Structures

  • WANG Rungu ,
  • DONG Xiao ,
  • GONG Jinghai
Expand
  • School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2023-09-25

  Revised date: 2023-12-13

  Accepted date: 2024-01-17

  Online published: 2024-02-06

摘要

研究单层网壳结构的局部加肋拓扑优化对提升其经济性与整体稳定性有重要意义.针对单层网壳结构,以结构用钢量为评价指标,基于渐进结构优化算法,提出局部加肋拓扑优化方法.根据结构中杆件的内力分布计算应变能,结合单层网壳结构的特点建立网格加强评价准则,在迭代运算中增加锥体加强应变能过大的网格,删除应变能过小的新增锥体,比较优化前后网壳结构的用钢量与整体稳定性,验证结构优化方法的可行性.经拓扑优化得到新的局部加肋单层网壳结构,相较于初始结构,优化后的结构用钢量减小,并且整体稳定性提高,结果可为单层网壳结构的局部加肋设计优化提供技术参考.

本文引用格式

王润谷 , 董骁 , 龚景海 . 单层网壳结构的局部加肋渐进式拓扑优化方法[J]. 上海交通大学学报, 2025 , 59(7) : 1019 -1028 . DOI: 10.16183/j.cnki.jsjtu.2023.490

Abstract

This paper investigates the topological optimization of locally reinforced single-layer reticulated shell structures to enhance their economy and overall stability. Using steel consumption as the evaluation index, a topological optimization method based on the evolutionary structural optimization algorithm is proposed for single-layer reticulated shell structures. The strain energy is calculated based on the internal force distribution of the structural members, and a grid strength evaluation criterion is established considering the specific characteristics of single-layer reticulated shell structures. In the iterative calculation, pyramids are added to strengthen the grid with excessive strain energy, while new pyramids with insufficient strain energy are removed. The steel consumption and the overall stability of the reticulated shell structure before and after optimization are compared to verify the effectiveness of the structural optimization method. After topological optimization, the locally reinforced single-layer reticulated shell structure exhibits a reduced steel consumption and improved overall stability compared to the initial structure. The results can provide technical references for optimizing the local reinforcement design of single-layer reticulated shell structures, and also provide references for similar structural optimization problems.

参考文献

[1] 梁汉奇, 张月强, 张峥. 异形单层网壳结构造型与关键问题研究[J]. 建筑结构, 2023, 53 (Sup.1): 418-423.
  LIANG Hanqi, ZHANG Yueqiang, ZHANG Zheng. Research on the structure design and key issues of special-shaped single-layer shell[J]. Building Structure, 2023, 53 (Sup.1): 418-423.
[2] 曹源, 陶志雄, 龙浩, 等. 某自由曲面单层网壳结构设计与节点分析[J]. 建筑结构, 2022, 52 (Sup.1): 591-596.
  CAO Yuan, TAO Zhixiong, LONG Hao, et al. Structural design and node analysis of the free-form single-layer reticulated shell[J]. Building Structure, 2022, 52 (Sup.1): 591-596.
[3] 田家安. 空间网格结构智能网格生成与选型优化研究[D]. 南京: 东南大学, 2022.
  TIAN Jia’an. Research on intelligent grid generation and selection optimization of spatial grid structure[D]. Nanjing: Southeast University, 2022.
[4] 谢亿民, 黄晓东, 左志豪, 等. 渐进结构优化法(ESO)和双向渐进结构优化法(BESO)的近期发展[J]. 力学进展, 2011, 41(4): 462-471.
  XIE Yimin, HUANG Xiaodong, ZUO Zhihao, et al. Recent development of evolutionary structural optimization (ESO) and bi-directional evolutionary structural optimization (BESO)[J]. Advances in Mechanics, 2011, 41(4): 462-471.
[5] 沈世钊, 武岳. 结构形态学与现代空间结构[J]. 建筑结构学报, 2014, 35(4): 1-10.
  SHEN Shizhao, WU Yue. Structural morphology and modern space structures[J]. Journal of Building Structures, 2014, 35(4): 1-10.
[6] 谢亿民, 杨晓英, STEVEN G P, 等. 渐进结构优化法的基本理论及应用[J]. 工程力学, 1999(6): 70-81.
  XIE Yimin, YANG Xiaoying, STEVEN G P, et al. The basic theory and application of evolutionary structural optimization method[J]. Engineering Mechanics, 1999(6): 70-81.
[7] 占玲玉, 何文君, 周岱, 等. 基于BESO算法的高桩承台式水平轴风力机支撑结构优化[J]. 上海交通大学学报, 2023, 57(8): 939-947.
  ZHAN Lingyu, HE Wenjun, ZHOU Dai, et al. Support structure optimization of high-pile cap supported horizontal axis wind turbine system based on BESO algorithm[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 939-947.
[8] 张氢, 颜廷鹏, 霍佳雨, 等. 基于ESO的起重机刚架结构离散拓扑优化研究[J]. 中国工程机械学报, 2022, 20(4): 283-287.
  ZHANG Qing, YAN Tingpeng, HUO Jiayu, et al. Topology optimization of discrete variable for crane rigid frame structure based on ESO[J]. Chinese Journal of Construction Machinery, 2022, 20(4): 283-287.
[9] 范钊. 基于双向渐进结构优化法的应力约束结构拓扑优化设计[D]. 武汉: 华中科技大学, 2019.
  FAN Zhao. Extended bi-directional evolutionary structural optimization method for stress constrained structural topology optimization design[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[10] 才琪, 冯若强. 基于改进双向渐进结构优化法的桁架结构拓扑优化[J]. 建筑结构学报, 2022, 43(4): 68-76.
  CAI Qi, FENG Ruoqiang. Topology optimization of truss structure based on improved bi-directional evolutionary structural optimization method[J]. Journal of Building Structures, 2022, 43(4): 68-76.
[11] 朱吉吉. 网架结构的拓扑优化与鲁棒性分析[D]. 杭州: 浙江大学, 2016.
  ZHU Jiji. Topology optimization and robustness analysis of space grid atructure[D]. Hangzhou: Zhejiang University, 2016.
[12] 中华人民共和国住房和城乡建设部. 空间网格结构技术规程: JGJ 7—2010[S]. 北京: 中国建筑工业出版社, 2010.
  Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for space frame structures: JGJ 7—2010[S]. Beijing: China Architecture & Building Press, 2010.
[13] 苏岩. 新型空间结构形态创建研究与应用[D]. 哈尔滨: 哈尔滨工业大学, 2021.
  SU Yan. Research and application of morphological generation for innovative spatial structures[D]. Harbin: Harbin Institute of Technology, 2021.
[14] 荣见华, 姜节胜, 胡德文, 等. 基于应力及其灵敏度的结构拓扑渐进优化方法[J]. 力学学报, 2003(5): 584-591.
  RONG Jianhua, JIANG Jiesheng, HU Dewen, et al. Evolutionary structural topology optimization method based on stress and its sensitivity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2003(5): 584-591.
[15] 谢亿民, 左志豪, 吕俊超. 利用双向渐进结构优化算法进行建筑设计[J]. 时代建筑, 2014(5): 20-25.
  XIE Yimin, ZUO Zhihao, Lü Junchao. Architectural design through bi-directional evolutionary structural optimization[J]. Time + Architecture, 2014(5): 20-25.
[16] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
  Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Load code for the design of building structures: GB 50009—2012[S]. Beijing: China Architecture & Building Press, 2012.
文章导航

/