新型电力系统与综合能源

基于变滤波时间常数和模糊控制的复合储能二次调频策略

  • 张仕鹏 ,
  • 李培强 ,
  • 张亦君 ,
  • 刘喜凤
展开
  • 1 福建理工大学 电子电气与物理学院, 福州 350118
    2 湖南大学 电气与信息工程学院, 长沙 410082
张仕鹏(1994—),硕士生,研究方向为储能建模与控制技术及其在电力系统中的应用.
李培强,教授,博士生导师;E-mail:lpqcs@hnu.edu.cn.

收稿日期: 2023-10-12

  修回日期: 2023-11-20

  录用日期: 2023-12-20

  网络出版日期: 2024-01-02

基金资助

国家自然科学基金(52377097)

Secondary Frequency Modulation Strategy of Composite Energy Storage Based on Variable Filter Time Constant and Fuzzy Control

  • ZHANG Shipeng ,
  • LI Peiqiang ,
  • ZHANG Yijun ,
  • LIU Xifeng
Expand
  • 1 College of Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350118, China
    2 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China

Received date: 2023-10-12

  Revised date: 2023-11-20

  Accepted date: 2023-12-20

  Online published: 2024-01-02

摘要

在复合储能系统中,协调不同类型储能之间的运行是提高储能调频性能的重要手段.为充分挖掘储能调频潜力,提出一种电池储能联合抽水蓄能的复合储能二次调频策略.针对传统一阶低通滤波器截止频率固定的缺点,提出滤波时间常数根据电网频率变化进行动态调整的方法,实现对复合储能内部调频指令分配.在调频阶段,考虑电池储能荷电状态(SOC)约束,设计电池储能-抽水蓄能协调控制的双模糊控制策略.在非调频阶段,根据logistic函数构建电池储能SOC自恢复曲线,利用抽水蓄能剩余容量对电池储能进行SOC自恢复.在两种典型工况下对该策略进行仿真分析,结果表明所提策略在改善调频效果和电池储能SOC状态方面具有优势.

本文引用格式

张仕鹏 , 李培强 , 张亦君 , 刘喜凤 . 基于变滤波时间常数和模糊控制的复合储能二次调频策略[J]. 上海交通大学学报, 2025 , 59(9) : 1370 -1382 . DOI: 10.16183/j.cnki.jsjtu.2023.516

Abstract

In a composite energy storage system, coordinating the operation of different types of energy storage is an important approach to enhancing frequency regulation performance. To fully tap the potential of energy storage for frequency modulation, this paper proposes a secondary frequency modulation strategy based on a hybrid system combining battery energy storage and pumped hydro storage. To address the limitation of traditional first-order low-pass filter with fixed cutoff frequencies, it proposes a dynamic adjustment method for the filter time constant based on frequency variation, enabling flexible allocation of modulation commands in the composite storage system. During frequency modulation, it designs a dual fuzzy control strategy to coordinate battery energy storage and pumped hydro storage, taking into account the state of charge (SOC) constraint of the battery. During non-frequency modulation, it constructs the SOC self-recovery curve of the battery using the logistic function, and utilizes the remaining capacity of the pumped hydro storage to restore the battery SOC. Simulation analyses under two typical working conditions show that the proposed strategy has advantages in improving frequency modulation performance and maintaining the SOC of the battery energy storage system.

参考文献

[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
  LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[2] 钱韦廷, 赵长飞, 万灿, 等. 基于概率预测的混合储能平抑风电波动随机优化调控方法[J]. 电力系统自动化, 2021, 45(18): 18-27.
  QIAN Weiting, ZHAO Changfei, WAN Can, et al. Probabilistic forecasting based stochastic optimal dispatch and control method of hybrid energy storage for smoothing wind power fluctuations[J]. Automation of Electric Power Systems, 2021, 45(18): 18-27.
[3] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
  ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
[4] 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908.
  LI Xinran, CUI Xiwen, HUANG Jiyuan, et al. The self-adaption control strategy of energy storage batteries participating in the primary frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3897-3908.
[5] MAKAROV Y V, DU P W, KINTNER-MEYER M C W, et al. Sizing energy storage to accommodate high penetration of variable energy resources[J]. IEEE Transactions on Sustainable Energy, 2012, 3(1): 34-40.
[6] XU Y W, MA Y C, HAN Y H, et al. Load frequency control for renewable energy power system based on sliding mode control with hybrid energy storage[C]// 2020 Chinese Control and Decision Conference. Hefei, China: IEEE, 2020: 1340-1345.
[7] 邹金, 赖旭, 汪宁渤. 大规模风电并网下的抽水蓄能机组调频控制研究[J]. 中国电机工程学报, 2017, 37(2): 564-572.
  ZOU Jin, LAI Xu, WANG Ningbo. Study on control of pumped storage units for frequency regulation in power systems integrated with large-scale wind power generation[J]. Proceedings of the CSEE, 2017, 37(2): 564-572.
[8] 鲍珣珣, 高伏英, 顾丽鸿, 等. 抽水蓄能电站区域负荷频率控制[J]. 上海交通大学学报, 2015, 49(11): 1701-1705.
  BAO Xunxun, GAO Fuying, GU Lihong, et al. Area load frequency control with pumped storage power station[J]. Journal of Shanghai Jiao Tong University, 2015, 49(11): 1701-1705.
[9] 单华, 和婧, 范立新, 等. 面向抽水蓄能电站区域负荷频率的分数阶PID控制研究[J]. 电网技术, 2020, 44(4): 1410-1418.
  SHAN Hua, HE Jing, FAN Lixin, et al. Research on fractional order PID control of regional load frequency of pumped storage power station[J]. Power System Technology, 2020, 44(4): 1410-1418.
[10] 李辉, 刘海涛, 宋二兵, 等. 双馈抽水蓄能机组参与电网调频的改进虚拟惯性控制策略[J]. 电力系统自动化, 2017, 41(10): 58-65.
  LI Hui, LIU Haitao, SONG Erbing, et al. Improved virtual inertia control strategy of doubly fed pumped storage unit for power network frequency modulation[J]. Automation of Electric Power Systems, 2017, 41(10): 58-65.
[11] 李辉, 王坤, 刘海涛, 等. 交流励磁抽水蓄能机组变下垂系数调频控制策略[J]. 电力自动化设备, 2018, 38(7): 68-73.
  LI Hui, WANG Kun, LIU Haitao, et al. Variable droop coefficient frequency control strategy of AC excited pumped storage unit[J]. Electric Power Automation Equipment, 2018, 38(7): 68-73.
[12] 陈亚红, 邓长虹, 刘玉杰, 等. 抽水工况双馈可变速抽蓄机组机电暂态建模及有功-频率耦合特性[J]. 中国电机工程学报, 2022, 42(3): 942-957.
  CHEN Yahong, DENG Changhong, LIU Yujie, et al. Electromechanical transient modelling and active power-frequency coupling characteristics of doubly-fed variable speed pumped storage under pumping mode[J]. Proceedings of the CSEE, 2022, 42(3): 942-957.
[13] 秦昊, 秦立军, 白雪辰, 等. 辅助抽水蓄能调频的飞轮控制策略[J]. 储能科学与技术, 2022, 11(12): 3915-3925.
  QIN Hao, QIN Lijun, BAI Xuechen, et al. A control strategy of flywheel energy storage system participating frequency regulation with pumped storage[J]. Energy Storage Science & Technology, 2022, 11(12): 3915-3925.
[14] 汤杰, 李欣然, 黄际元, 等. 以净效益最大为目标的储能电池参与二次调频的容量配置方法[J]. 电工技术学报, 2019, 34(5): 963-972.
  TANG Jie, LI Xinran, HUANG Jiyuan, et al. Capacity allocation of BESS in secondary frequency regulation with the goal of maximum net benefit[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 963-972.
[15] 王凯丰, 谢丽蓉, 乔颖, 等. 电池储能提高电力系统调频性能分析[J]. 电力系统自动化, 2022, 46(1): 174-181.
  WANG Kaifeng, XIE Lirong, QIAO Ying, et al. Analysis of frequency regulation performance of power system improved by battery energy storage[J]. Automation of Electric Power Systems, 2022, 46(1): 174-181.
[16] 黄际元, 李欣然, 常敏, 等. 考虑储能电池参与一次调频技术经济模型的容量配置方法[J]. 电工技术学报, 2017, 32(21): 112-121.
  HUANG Jiyuan, LI Xinran, CHANG Min, et al. Capacity allocation of BESS in primary frequency regulation considering its technical-economic model[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 112-121.
[17] 李若, 李欣然, 谭庄熙, 等. 考虑储能电池参与二次调频的综合控制策略[J]. 电力系统自动化, 2018, 42(8): 74-82.
  LI Ruo, LI Xinran, TAN Zhuangxi, et al. Integrated control strategy considering energy storage battery participating in secondary frequency regulation[J]. Automation of Electric Power Systems, 2018, 42(8): 74-82.
[18] 陈雪梅, 陆超, 刘杰, 等. 考虑调频性能考核的储能-机组联合调频控制策略[J]. 中国电机工程学报, 2021, 41(10): 3383-3391.
  CHEN Xuemei, LU Chao, LIU Jie, et al. Control strategy considering AGC performance assessment for BESS coordinated with thermal power unit in AGC[J]. Proceedings of the CSEE, 2021, 41(10): 3383-3391.
[19] GOYA T, OMINE E, KINJYO Y, et al. Frequency control in isolated island by using parallel operated battery systems applying H control theory based on droop characteristics[J]. IET Renewable Power Generation, 2011, 5(2): 160-166.
[20] 崔红芬, 杨波, 蒋叶, 等. 基于模糊控制和SOC自恢复储能参与二次调频控制策略[J]. 电力系统保护与控制, 2019, 47(22): 89-97.
  CUI Hongfen, YANG Bo, JIANG Ye, et al. Strategy based on fuzzy control and self adaptive modification of SOC involved in secondary frequency regulation with battery energy storage[J]. Power System Protection & Control, 2019, 47(22): 89-97.
[21] 张舒鹏, 董树锋, 徐成司, 等. 大规模储能参与电网调频的双层控制策略[J]. 电力系统自动化, 2020, 44(19): 55-62.
  ZHANG Shupeng, DONG Shufeng, XU Chengsi, et al. Bi-level control strategy for power grid frequency regulation with participation of large-scale energy storage[J]. Automation of Electric Power Systems, 2020, 44(19): 55-62.
[22] 毛志宇, 李培强, 郭思源. 基于自适应时间尺度小波包和模糊控制的复合储能控制策略[J]. 电力系统自动化, 2023, 47(9): 158-165.
  MAO Zhiyu, LI Peiqiang, GUO Siyuan. Control strategy of composite energy storage based on wavelet packet with adaptive time scale and fuzzy control[J]. Automation of Electric Power Systems, 2023, 47(9): 158-165.
[23] 李学斌, 刘建伟. 采用二阶滤波的混合储能系统实时功率分配方法[J]. 电网技术, 2019, 43(5): 1650-1657.
  LI Xuebin, LIU Jianwei. Real-time power distribution method adopting second-order filtering for hybrid energy storage system[J]. Power System Technology, 2019, 43(5): 1650-1657.
[24] 车泉辉, 吴耀武, 祝志刚, 等. 基于碳交易的含大规模光伏发电系统复合储能优化调度[J]. 电力系统自动化, 2019, 43(3): 76-82.
  CHE Quanhui, WU Yaowu, ZHU Zhigang, et al. Carbon trading based optimal scheduling of hybrid energy storage system in power systems with large-scale photovoltaic power generation[J]. Automation of Electric Power Systems, 2019, 43(3): 76-82.
[25] 韩健民, 薛飞宇, 梁双印, 等. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196.
  HAN Jianmin, XUE Feiyu, LIANG Shuangyin, et al. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization[J]. Energy Storage Science & Technology, 2022, 11(7): 2188-2196.
[26] JIN C L, LU N, LU S, et al. A coordinating algorithm for dispatching regulation services between slow and fast power regulating resources[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 1043-1050.
[27] 李欣然, 黄际元, 陈远扬, 等. 基于灵敏度分析的储能电池参与二次调频控制策略[J]. 电工技术学报, 2017, 32(12): 224-233.
  LI Xinran, HUANG Jiyuan, CHEN Yuanyang, et al. Battery energy storage control strategy in secondary frequency regulation considering its action moment and depth[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 224-233.
文章导航

/