SF6中沿面放电及其放电信号的多尺度仿真研究
收稿日期: 2023-10-19
修回日期: 2023-11-20
录用日期: 2023-11-30
网络出版日期: 2023-12-08
基金资助
国家电网上海市电力公司科技项目(520950220004)
A Multiscale Simulation of Surface Discharge and Discharge Signals in SF6
Received date: 2023-10-19
Revised date: 2023-11-20
Accepted date: 2023-11-30
Online published: 2023-12-08
沿面放电是气体绝缘组合电器设备内部的常见放电类型,目前对其微观过程的认识尚不明晰,缺陷局部放电微观过程与宏观检测信号间亦缺乏理论关联.首先基于流体-化学模型仿真SF6气体中的沿面放电过程,得到带电粒子浓度、沿面流注速率的变化规律.然后,将微观放电产生的电流脉冲作为激励,基于有限积分法对沿面放电产生的放电信号进行仿真,建立局部放电微观过程与放电检测信号之间的对应关系.结合微观放电仿真得到的电磁信号时域波形与传统的高斯激励源相比更加贴合实际.研究成果是对现有局部放电信号微观机理研究的有效补充,为基于放电信号分析的绝缘状态评估奠定基础.
周录波 , 张钊棋 , 王栋 , 宋辉 . SF6中沿面放电及其放电信号的多尺度仿真研究[J]. 上海交通大学学报, 2025 , 59(9) : 1397 -1406 . DOI: 10.16183/j.cnki.jsjtu.2023.525
Surface discharge is a common type of discharge occurring in gas-insulated switchgear equipment, of which the microscopic process remains unclear. Additionly, there is a lack of theoretical correlation between the microscopic process of partial discharge due to defects and the macroscopic detection signals. First, the surface discharge process in SF6 is simulated based on a fluid-chemical simulation model, revealing the variation patterns of charged particle concentration and surface streamer velocity. Then, taking the current pulse generated in the microscopic discharges as excitation sources, the discharge signals resulting from the surface discharges are simulated based on the finite integral method, establishing a correspondance between the microscopic partial discharge process and the detectable discharge signals. Compared with the conventional Gaussian excitation source, the time-domain waveforms of electromagnetic signals obtained from the microscopic discharge simulation more chosely matches to realistic conditions. These findings effectively supplement existing researches on the microscopic mechanisms of partial discharge signals, laying a foundation for the insulation state evaluation based on the discharge signal analysis.
| [1] | SONG H, ZHANG Z Q, TIAN J P, et al. Multiscale fusion simulation of the influence of temperature on the partial discharge signal of GIS insulation void defects[J]. IEEE Transactions on Power Delivery, 2021, 37(2): 1304-1314. |
| [2] | ZHANG Z Q, SONG H, MENG X L, et al. Experimental research on the influence of temperature on the discharge signal of void defects in GIS[J]. High Voltage, 2022, 7(2): 314-324. |
| [3] | 张开放, 张黎, 李宗蔚, 等. 高频正弦电应力下气-固绝缘沿面放电现象及特征分析[J]. 电工技术学报, 2019, 34(15): 3275-3284. |
| ZHANG Kaifang, ZHANG Li, LI Zongwei, et al. Analysis of the phenomena and characteristics of gas-solid insulation surface discharge under high frequency sinusoidal electrical stress[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3275-3284. | |
| [4] | LI X R, SUN A B, ZHANG G J, et al. A computational study of positive streamers interacting with dielectrics[J]. Plasma Sources Science & Technology, 2020, 29(6): 065004. |
| [5] | LI X R, SUN A B, TEUNISSEN J. A computational study of negative surface discharges: Characteristics of surface streamers and surface charges[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2020, 27(4): 1178-1186. |
| [6] | 李鑫涛, 林莘, 徐建源, 等. SF6/N2混合气体电击穿特性仿真及实验[J]. 电工技术学报, 2017, 32(20): 42-52. |
| LI Xintao, LIN Xin, XU Jianyuan, et al. Simulations and experiments of dielectric breakdown characteristics in SF6/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 42-52. | |
| [7] | PHELPS A V, VAN BRUNT R J. Electron-transport, ionization, attachment, and dissociation coefficients in SF6 and its mixtures[J]. Journal of Applied Physics, 1988, 64(9): 4269-4277. |
| [8] | 高青青, 王小华, 杨爱军, 等. SF6气体中交流电晕放电电流及带电粒子的时空分布[J]. 高电压技术, 2021, 47(9): 3355-3366. |
| GAO Qingqing, WANG Xiaohua, YANG Aijun, et al. Discharge current and charged species’ temporal-spatial distribution of AC corona discharge in SF6[J]. High Voltage Engineering, 2021, 47(9): 3355-3366. | |
| [9] | 牛海清, 徐乐平, 李小潇, 等. SF6气体正极性电晕放电特性仿真研究[J]. 高电压技术, 2021, 47(11): 4063-4071. |
| NIU Haiqing, XU Leping, LI Xiaoxiao, et al. Simulation and study of positive corona characteristics in SF6 gas[J]. High Voltage Engineering, 2021, 47(11): 4063-4071. | |
| [10] | LUO B, HE H X, CHENG C, et al. Numerical simulation of the positive streamer propagation and chemical reactions in SF6/N2 mixtures under non-uniform field[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2020, 27(3): 782-790. |
| [11] | OU X F, WANG L J, LIU J, et al. Numerical simulation of streamer discharge development processes with multi-component SF6 mixed gas[J]. Physics of Plasmas, 2020, 27(7): 073504. |
| [12] | ZHANG R M, WANG L J, LIU J, et al. Numerical simulation of breakdown properties and streamer development processes in SF6/CO2 mixed gas[J]. AIP Advances, 2022, 12(1): 015003. |
| [13] | 司马文霞, 刘春香, 杨鸣, 等. 沿绝缘介质表面的气体放电等离子体模型[J]. 中国电机工程学报, 2017, 37(9): 2725-2733. |
| SIMA Wenxia, LIU Chunxiang, YANG Ming, et al. Plasma model of gas discharge along the dielectric surface[J]. Proceedings of the CSEE, 2017, 37(9): 2725-2733. | |
| [14] | 董国静, 刘涛, 李庆民. 脉冲电应力下空气-聚酰亚胺绝缘沿面放电过程数值模拟[J]. 电工技术学报, 2020, 35(9): 2006-2019. |
| DONG Guojing, LIU Tao, LI Qingmin. Numerical simulation for surface discharge of air-polyimide insulation under pulsed electrical stress[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2006-2019. | |
| [15] | ZHOU Y F, WANG Y L, WANG W. A study on the propagation characteristics of partial discharge in cable joints based on the FDTD method[J]. IEEE Access, 2020, 8: 130094-130103. |
| [16] | 陶然, 沈培锋, 陈挺, 等. 数字化模型下的GIS特高频信号反演实际放电量方法[J]. 上海交通大学学报, 2025, 59(6): 800-811. |
| TAO Ran, SHEN Peifeng, CHEN Ting, et al. Estimation method of actual discharge quantity inferred from ultra-high frequency signals in digital modeling of GIS[J]. Journal of Shanghai Jiao Tong University, 2025, 59(6): 800-811. | |
| [17] | VAN BRUNT R J, HERRON J T. Fundamental processes of SF/sub 6/decomposition and oxidation in glow and corona discharges[J]. IEEE Transactions on Electrical Insulation, 1990, 25(1): 75-94. |
| [18] | HAGELAAR G M, PITCHFORD L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science & Technology, 2005, 14(4): 722-733. |
| [19] | 张钊棋, 宋辉, 代杰杰, 等. 大气压下温度对针板空气间隙流注放电影响的仿真研究[J]. 中国电机工程学报, 2021, 41(8): 2929-2938. |
| ZHANG Zhaoqi, SONG Hui, DAI Jiejie, et al. Simulation research on the influences of temperature on streamer discharge of the needle plate air gap at atmospheric pressure[J]. Proceedings of the CSEE, 2021, 41(8): 2929-2938. | |
| [20] | POKHREL S, SHANKAR V, SIMPSON J J. 3-D FDTD modeling of electromagnetic wave propagation in magnetized plasma requiring singular updates to the current density equation[J]. IEEE Transactions on Antennas & Propagation, 2018, 66(9): 4772-4781. |
| [21] | CLEMENS M, GJONAJ E, PINDER P, et al. Numerical simulation of coupled transient thermal and electromagnetic fields with the finite integration method[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1448-1452. |
| [22] | ZHENG Q F, LUO L G, SONG H, et al. Hybrid simulation method for EM wave generation and propagation of streamer discharges[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2021, 28(6): 2018-2026. |
| [23] | 吴凡, 罗林根, 王辉, 等. 基于接收信号强度功率和最大似然估计的特高频局部放电测向方法[J]. 电工技术学报, 2020, 35(12): 2689-2697. |
| WU Fan, LUO Lingen, WANG Hui, et al. RSSI-power-based direction of arrival estimation using maximum likelihood estimator and antenna array[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2689-2697. |
/
| 〈 |
|
〉 |