交/直流混合配网多逆变器分布式协同抗扰控制
收稿日期: 2023-09-25
修回日期: 2023-11-12
录用日期: 2023-11-17
网络出版日期: 2023-12-13
基金资助
国网河南省电力公司科技项目(5217L0220013)
Distributed Cooperative Disturbance-Rejection Control of Hybrid Alternating Current/Direct Current Distribution Grids with Multiple Inverters
Received date: 2023-09-25
Revised date: 2023-11-12
Accepted date: 2023-11-17
Online published: 2023-12-13
电力电子设备的强非线性、模型误差以及外部系统扰动给配电网的电压稳定控制带来巨大挑战.多逆变器分布式协同抗扰控制是提升配电网电压稳定性的一种新思路.首先,将复杂的逆变器高维模型转换为输入-输出等效模型,利用高增益扩展状态观测器对系统中多种扰动影响进行估计;同时,根据一致性协同控制理论设计多逆变器的分布式协同控制策略,结合扰动估计结果,实现逆变器网络的电压协同控制和主动扰动抑制.为确保协同控制的动态性能,从图论和网络控制的角度提出通信拓扑优选方法.在PowerFactory软件中搭建由4个逆变器构成的配电网测试系统,仿真结果表明:所提控制策略和通信拓扑优选方法能够实现多逆变器的电压协同跟踪调控以及扰动抑制.
全少理 , 于昊正 , 马杰 , 王炜宇 , 郭勇 , 陈春 . 交/直流混合配网多逆变器分布式协同抗扰控制[J]. 上海交通大学学报, 2025 , 59(5) : 605 -616 . DOI: 10.16183/j.cnki.jsjtu.2023.492
Voltage stability control in distribution grids faces challenges due to strong nonlinearity, modeling error of power electronic devices, and external disturbances. Distributed cooperative disturbance-rejection control of multiple inverters is a novel and promising approach to improve voltage stability in distribution grids. First, the high-dimension model of inverters is simplified into an equivalent input-output model. An extended state high-gain observer is utilized to estimate the effects of multiple disturbances in the equivalent model. Then, a distributed cooperative control strategy for multiple converters is designed based on the consensus theory, achieving coordinated voltage control and active disturbance suppression by integrating the disturbance estimation results. To ensure the dynamic performance of the distributed controller, an optimal topology selection method is proposed based on the graph theory and network control system. A test system consisting of four inverters is built in PowerFactory to verify the proposed control strategy. The simulation results show that the proposed control strategy effectively realizes coordinated voltage tracking control and suppress external disturbances.
| [1] | 张子扬, 张宁, 杜尔顺, 等. 双高电力系统频率安全问题评述及其应对措施[J]. 中国电机工程学报, 2022, 42(1): 1-25. |
| ZHANG Ziyang, ZHANG Ning, DU Ershun, et al. Review and countermeasures on frequency security issues of power systems with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2022, 42(1): 1-25. | |
| [2] | 钟伟, 周宇杰, 王泽烨, 等. 新型电力系统安全稳定运行分析[J]. 湖南电力, 2022, 42(3): 29-34. |
| ZHONG Wei, ZHOU Yujie, WANG Zeye, et al. Analysis of safe and stable operation of new power system[J]. Hunan Electric Power, 2022, 42(3): 29-34. | |
| [3] | 颜文婷, 杨隆, 李长城, 等. 考虑地震攻击交通网影响的配电网韧性评估及提升策略[J]. 上海交通大学学报, 2023, 57(9): 1165-1175. |
| YAN Wenting, YANG Long, LI Changcheng, et al. Resilience evaluation and enhancement strategy of distribution network considering impact of seismic attack on transportation networks[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1165-1175. | |
| [4] | 余威, 杨欢红, 焦伟, 等. 基于优劣解距离算法的光储配电网自适应虚拟惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1317-1324. |
| YU Wei, YANG Huanhong, JIAO Wei, et al. Adaptive virtual inertial control strategy of optical storage and distribution network based on TOPSIS algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1317-1324. | |
| [5] | 马艺玮, 杨苹, 王月武, 等. 微电网典型特征及关键技术[J]. 电力系统自动化, 2015, 39(8): 168-175. |
| MA Yiwei, YANG Ping, WANG Yuewu, et al. Typical characteristics and key technologies of microgrid[J]. Automation of Electric Power Systems, 2015, 39(8): 168-175. | |
| [6] | BIDRAM A, DAVOUDI A, LEWIS F L, et al. Distributed cooperative secondary control of microgrids using feedback linearization[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3462-3470. |
| [7] | 肖万芳, 凡广宽, 田浩, 等. 模型参考自适应PID控制下的孤岛微网电压控制[J]. 电力系统及其自动化学报, 2021, 33(2): 66-74. |
| XIAO Wanfang, FAN Guangkuan, TIAN Hao, et al. Voltage control of islanded microgrid under model reference adaptive PID control[J]. Proceedings of the CSU-EPSA, 2021, 33(2): 66-74. | |
| [8] | 李志华, 曾江, 黄骏翅, 等. 基于线性自抗扰控制的微网逆变器时-频电压控制策略[J]. 电力系统自动化, 2020, 44(10): 145-154. |
| LI Zhihua, ZENG Jiang, HUANG Junchi, et al. Time-frequency voltage control strategy of microgrid inverter based on linear active disturbance rejection control[J]. Automation of Electric Power Systems, 2020, 44(10): 145-154. | |
| [9] | 杨林, 曾江, 马文杰, 等. 基于改进二阶线性自抗扰技术的微网逆变器电压控制[J]. 电力系统自动化, 2019, 43(4): 146-153. |
| YANG Lin, ZENG Jiang, MA Wenjie, et al. Voltage control of microgrid inverter based on improved second-order linear active disturbance rejection control[J]. Automation of Electric Power Systems, 2019, 43(4): 146-153. | |
| [10] | 曹倩. 多智能体系统一致性算法及其在微网中的应用[D]. 成都: 电子科技大学, 2016. |
| CAO Qian. Consensus algorithms of multi-agent systems and its application on micro-grid[D]. Chengdu: University of Electronic Science and Technology of China, 2016. | |
| [11] | 李双, 尤文, 曲娜, 等. 多智能体协同控制发展及电力方面应用综述[J]. 自动化博览, 2020, 37(1): 66-69. |
| LI Shuang, YOU Wen, QU Na, et al. Overview of multi-agent collaborative control development and applications in power system[J]. Automation Panorama, 2020, 37(1): 66-69. | |
| [12] | SUN M, CHEN Y, CAO L, et al. Adaptive third-order leader-following consensus of nonlinear multi-agent systems with perturbations[J]. Chinese Physics Letters, 2012, 29(2): 020503. |
| [13] | DEHKORDI N M, SADATI N, HAMZEH M. Distributed robust finite-time secondary voltage and frequency control of islanded microgrids[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3648-3659. |
| [14] | CHEN X, SHI M X, SUN H S, et al. Distributed cooperative control and stability analysis of multiple DC electric springs in a DC microgrid[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5611-5622. |
| [15] | MORSTYN T, HREDZAK B, DEMETRIADES G D, et al. Unified distributed control for DC microgrid operating modes[J]. IEEE Transactions on Power Systems, 2016, 31(1): 802-812. |
| [16] | NASIRIAN V, MOAYEDI S, DAVOUDI A, et al. Distributed cooperative control of DC microgrids[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 2288-2303. |
| [17] | SHI M X, CHEN X, ZHOU J Y, et al. Distributed optimal control of energy storages in a DC microgrid with communication delay[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2033-2042. |
| [18] | 刘维亮, 周旻, 钟伟东, 等. 基于多智能体技术的泛微网区域自治-协同控制技术研究[J]. 电网与清洁能源, 2022, 38(12): 61-71. |
| LIU Weiliang, ZHOU Min, ZHONG Weidong, et al. Research on regional autonomous cooperative control technology of the pan microgrid based on multi-agent technology[J]. Power System & Clean Energy, 2022, 38(12): 61-71. | |
| [19] | 高扬, 艾芊, 王靖. 多智能体系统的交直流混合微网群一致性协同控制[J]. 高电压技术, 2018, 44(7): 2372-2377. |
| GAO Yang, AI Qian, WANG Jing. Consensus cooperative control of AC/DC hybrid microgrids based on multi-agent system[J]. High Voltage Engineering, 2018, 44(7): 2372-2377. | |
| [20] | 范培潇, 柯松, 杨军, 等. 基于改进多智能体深度确定性策略梯度的多微网负荷频率协同控制策略[J]. 电网技术, 2022, 46(9): 3504-3515. |
| FAN Peixiao, KE Song, YANG Jun, et al. Load frequency coordinated control strategy of multi-microgrid based on improved MA-DDPG[J]. Power System Technology, 2022, 46(9): 3504-3515. | |
| [21] | 周儒畅, 王子强, 王杰. 基于预定时间一致性的直流微电网分布式协同控制[J]. 上海交通大学学报, 2023, 57(7): 824-834. |
| ZHOU Ruchang, WANG Ziqiang, WANG Jie. Distributed prescribed-time consensus based cooperative control for DC microgrids[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 824-834. | |
| [22] | SAAD H, PERALTA J, DENNETIèRE S, et al. Dynamic averaged and simplified models for MMC-based HVDC transmission systems[J]. IEEE Transactions on Power Delivery, 2013, 28(3): 1723-1730. |
| [23] | SAAD H, DENNETIèRE S, MAHSEREDJIAN J, et al. Modular multilevel converter models for electromagnetic transients[J]. IEEE Transactions on Power Delivery, 2014, 29(3): 1481-1489. |
| [24] | NANDANOORI S P, KUNDU S, DU W, et al. Distributed small-signal stability conditions for inverter-based unbalanced microgrids[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3981-3990. |
| [25] | WEST D B. Introduction to graph theory[M]. 2nd ed. USA: Pearson, 2018. |
| [26] | MESBAHI M, MAGNUS E. Graph theoretic methods in multiagent networks[M]. Princeton, USA: Princeton University Press, 2010. |
/
| 〈 |
|
〉 |