新型电力系统与综合能源

基于频域模态法的新能源电力系统振荡稳定性评估

  • 高磊 ,
  • 马骏超 ,
  • 吕敬 ,
  • 刘佳宁 ,
  • 王晨旭 ,
  • 蔡旭
展开
  • 1.上海交通大学 电力传输与功率变换控制教育部重点实验室,上海 200240
    2.国网浙江省电力有限公司电力科学研究院,杭州 310014
高 磊(1997—),博士生,从事新能源柔直并网稳定分析与控制研究.
吕 敬,副教授,博士生导师,电话(Tel.):021-34207001;E-mail:lvjing@sjtu.edu.cn.

收稿日期: 2023-07-31

  录用日期: 2023-10-26

  网络出版日期: 2023-12-05

基金资助

国网浙江省电力有限公司科技项目(B311DS22000K)

Oscillatory Stability Assessment of Renewable Power Systems Based on Frequency-Domain Modal Analysis

  • GAO Lei ,
  • MA Junchao ,
  • Lü Jing ,
  • LIU Jianing ,
  • WANG Chenxu ,
  • CAI Xu
Expand
  • 1. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
    2. State Grid Zhejiang Electric Power Co., Ltd. Research Institute, Hangzhou 310014, China

Received date: 2023-07-31

  Accepted date: 2023-10-26

  Online published: 2023-12-05

摘要

随着新能源接入比例的不断提高,电力系统的次/超同步振荡风险加剧,准确评估新能源电力系统的振荡稳定性是保障系统安全稳定运行的关键.首先,研究了一种基于频域模态分析的新能源电力系统振荡稳定性评估方法,该方法通过建立新能源机组和场站、传输线、同步机、变压器等关键设备和场站的频域阻抗或导纳模型,根据实际系统拓扑构建系统级频域网络模型.然后,通过求解回路阻抗矩阵或节点导纳矩阵行列式的零点来评估新能源电力系统的振荡稳定性,通过计算弱阻尼振荡模式的节点参与因子矩阵定位系统薄弱点,为振荡抑制措施的实施提供依据.以国内华东地区某实际新能源电力系统为例,利用频域模态分析法评估新能源接入容量和电网运行工况变化下系统的振荡稳定性.最后,利用PSCAD/EMTDC软件搭建该系统的时域仿真模型,验证了理论分析的正确性.

本文引用格式

高磊 , 马骏超 , 吕敬 , 刘佳宁 , 王晨旭 , 蔡旭 . 基于频域模态法的新能源电力系统振荡稳定性评估[J]. 上海交通大学学报, 2025 , 59(6) : 821 -835 . DOI: 10.16183/j.cnki.jsjtu.2023.358

Abstract

The increasing penetration of the renewable energy has increased the risks of sub/super synchronous oscillations in power systems. Therefore, it is critical to accurately evaluate the oscillatory stability of renewable power systems ensuring the safe and stable operation of the systems. In this paper, a method for evaluating the oscillatory stability of renewable power systems based on frequency-domain modal analysis is investigated. First, the frequency-domain impedance or admittance models of key equipment and stations are established, including the renewable power generators and stations, transmission lines, synchronous generators, transformers, etc. Next, a system-level frequency-domain network model is constructed based on the actual system topology. Then, the oscillatory stability of the renewable power system is evaluated by solving the zeros of the determinant of the loop impedance matrix or the node admittance matrix of the system. The weak points of the system are identified using the participated matrix of the weak oscillation mode, which provides reference for implementation of oscillation suppression measures. Taking the practical renewable power system in East China as an example, the oscillatory stability of the system considering the varying access capacity of renewables under different grid operating conditions is assessed using the frequency-domain modal analysis method. Finally, the time-domain simulation model of the actual renewable power system is built in PSCAD/EMTDC to verify the theoretical analysis.

参考文献

[1] 魏娟, 黎灿兵, 黄晟, 等. 大规模风电场高电压穿越控制方法研究综述[J]. 上海交通大学学报, 2024, 58(6): 783-797.
  WEI Juan, LI Canbing, HUANG Sheng, et al. Review on high voltage ride-through control method of large-scale wind farm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 783-797.
[2] 马宁宁, 谢小荣, 贺静波, 等. 高比例新能源和电力电子设备电力系统的宽频振荡研究综述[J]. 中国电机工程学报, 2020, 40(15): 4720-4732.
  MA Ningning, XIE Xiaorong, HE Jingbo, et al. Review of wide-band oscillation in renewable and power electronics highly integrated power systems[J]. Proceedings of the CSEE, 2020, 40(15): 4720-4732.
[3] 林勇, 康佳乐, 余浩, 等. 大规模光伏发电经串补输电线路并网系统强迫次同步振荡机制[J]. 上海交通大学学报, 2022, 56(9): 1118-1127.
  LIN Yong, KANG Jiale, YU Hao, et al. Mechanism of forced subsynchronous oscillation of large-scale photovoltaic power generation grid-connected system with series compensation transmission lines[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1118-1127.
[4] REN W, LARSEN E. A refined frequency scan approach to sub-synchronous control interaction (SSCI) study of wind farms[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3904-3912.
[5] WANG L, XIE X R, JIANG Q R, et al. Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2772-2779.
[6] 杜镇宇, 阳岳希, 季柯, 等. 张北柔直工程高频谐波振荡机理与抑制方法研究[J]. 电网技术, 2022, 46(8): 3066-3075.
  DU Zhenyu, YANG Yuexi, JI Ke, et al. High frequency harmonic resonance and suppression in Zhangbei Project[J]. Power System Technology, 2022, 46(8): 3066-3075.
[7] 苑宾, 厉璇, 尹聪琦, 等. 孤岛新能源场站接入柔性直流高频振荡机理及抑制策略[J]. 电力系统自动化, 2023, 47(4): 133-141.
  YUAN Bin, LI Xuan, YIN Congqi, et al. Mechanism and suppression strategy of high-frequency oscillation caused by integration of islanded renewable energy station into MMC-HVDC system[J]. Automation of Electric Power Systems, 2023, 47(4): 133-141.
[8] 高磊, 吕敬, 蔡旭. 如东海上风电柔直送出系统的中频振荡特性分析[J]. 电网技术, 2023, 47(9): 3495-3509.
  GAO Lei, Lü Jing, CAI Xu. Analysis of mid-frequency oscillation characteristics in Rudong MMC-HVDC system for offshore wind farms[J]. Power System Technology, 2023, 47(9): 3495-3509.
[9] 衣立东, 马宁宁, 丁茂生, 等. 新型电力系统宽频振荡"三道防线"体系架构[J]. 电网技术, 2023, 47(10): 4092-4102.
  YI Lidong, MA Ningning, DING Maosheng, et al. Structure of "three defensive lines" for wide-band oscillations in new-type power systems[J]. Power System Technology, 2023, 47(10): 4092-4102.
[10] 张志强, 李秋彤, 余浩, 等. 海上直驱风电经柔直并网系统的次/超同步振荡特性分析[J]. 上海交通大学学报, 2022, 56(12): 1572-1583.
  ZHANG Zhiqiang, LI Qiutong, YU Hao, et al. Analysis of sub/super-synchronous oscillation of direct-drive offshore wind power grid-connected system via VSC-HVDC[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1572-1583.
[11] SHAO B B, ZHAO S Q, YANG Y H, et al. Sub-synchronous oscillation characteristics and analysis of direct-drive wind farms with VSC-HVDC systems[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2): 1127-1140.
[12] SUN J. Impedance-based stability criterion for grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3075-3078.
[13] 吕敬, 蔡旭, 张占奎, 等. 海上风电场经MMC-HVDC并网的阻抗建模及稳定性分析[J]. 中国电机工程学报, 2016, 36(14): 3771-3781.
  Lü Jing, CAI Xu, ZHANG Zhankui, et al. Impedance modeling and stability analysis of MMC-based HVDC for offshore wind farms[J]. Proceedings of the CSEE, 2016, 36(14): 3771-3781.
[14] 陈剑, 杜文娟, 王海风. 基于动态参数等效的风电场并网系统振荡稳定性评估的数据驱动方法[J]. 中国电机工程学报, 2022, 42(19): 6958-6973.
  CHEN Jian, DU Wenjuan, WANG Haifeng. Data-driven method for oscillation stability evaluation of wind farm grid-connected system based on dynamic parameter equivalence[J]. Proceedings of the CSEE, 2022, 42(19): 6958-6973.
[15] 陈剑, 杜文娟, 王海风. 采用深度迁移学习定位含直驱风机次同步振荡源机组的方法[J]. 电工技术学报, 2021, 36(1): 179-190.
  CHEN Jian, DU Wenjuan, WANG Haifeng. A method of locating the power system subsynchronous oscillation source unit with grid-connected PMSG using deep transfer learning[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 179-190.
[16] 饶仪明, 吕敬, 王众, 等. 基于数据-模型融合驱动的新能源场站宽频阻抗在线辨识及稳定性评估[J]. 中国电机工程学报, 2024, 44(7): 2670-2685.
  RAO Yiming, Lü Jing, WANG Zhong, et al. Wideband impedance online identification and stability assessment of renewable power plants based on physics-informed data-driven method[J]. Proceedings of the CSEE, 2024, 44(7): 2670-2685.
[17] XU W, HUANG Z Y, CUI Y, et al. Harmonic resonance mode analysis[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1182-1190.
[18] ZHAN Y, XIE X R, LIU H K, et al. Frequency-domain modal analysis of the oscillatory stability of power systems with high-penetration renewables[J]. IEEE Transactions on Sustainable Energy, 2019, 10(3): 1534-1543.
[19] 占颖, 吴琛, 谢小荣, 等. 风电并网系统次同步振荡的频域模式分析[J]. 电力系统自动化, 2020, 44(18): 90-97.
  ZHAN Ying, WU Chen, XIE Xiaorong, et al. Frequency domain modal analysis of subsynchronous oscillation in grid-connected wind power system[J]. Automation of Electric Power Systems, 2020, 44(18): 90-97.
[20] 宗皓翔, 张琛, 蔡旭. 电力电子主导的交直流混联电网振荡分析与评估[J]. 中国电机工程学报, 2023, 43(10): 3844-3856.
  ZONG Haoxiang, ZHANG Chen, CAI Xu. Oscillation analysis and evaluation of the power electronics-dominated hybrid AC/DC grid[J]. Proceedings of the CSEE, 2023, 43(10): 3844-3856.
[21] 张东辉, 陈新, 张旸, 等. 基于有源节点序阻抗模型的风电场稳定性分析及其振荡参与风险评估方法[J]. 中国电机工程学报, 2023, 43(10): 3832-3844.
  ZHANG Donghui, CHEN Xin, ZHANG Yang, et al. Stability analysis and resonance participation risk assessment of wind farm based on active node sequence impedance model[J]. Proceedings of the CSEE, 2023, 43(10): 3832-3844.
[22] XUE T, LYU J, WANG H, et al. A complete impedance model of a PMSG-based wind energy conversion system and its effect on the stability analysis of MMC-HVDC connected offshore wind farms[J]. IEEE Transactions on Energy Conversion, 2021, 36(4): 3449-3461.
[23] YANG H, YANG M L, PING Y, et al. Passivity-based stability analysis of parallel single-phase inverters with hybrid reference frame control considering PLL effect[J]. International Journal of Electrical Power & Energy Systems, 2022, 135: 107473.
[24] ZONG H X, LYU J, CAI X, et al. Accurate aggregated modelling of wind farm systems in modified sequence domain for stability analysis[J]. Electric Power Systems Research, 2019, 175: 105928.
[25] GU Y J, LI Y T, ZHU Y, et al. Impedance-based whole-system modeling for a composite grid via embedding of frame dynamics[J]. IEEE Transactions on Power Systems, 2021, 36(1): 336-345.
文章导航

/