考虑灵活调节能力的梯级水风光蓄互补系统日前优化运行策略
收稿日期: 2023-08-25
修回日期: 2023-10-30
录用日期: 2023-11-30
网络出版日期: 2023-12-06
Optimal Operation Strategy of Cascade Hydro-Wind-Solar-Pumped Storage Complementary System Considering Flexible Regulation Ability
Received date: 2023-08-25
Revised date: 2023-10-30
Accepted date: 2023-11-30
Online published: 2023-12-06
在“双碳”目标的背景下,大规模风光资源的接入和消纳是日后能源发展的必然趋势,但随着风光并网容量的增长,电力系统也需要更多的灵活性资源来保障安全运行.水电是一种可再生的灵活性资源,具有优异的灵活调节能力.为研究水电在系统中的灵活调节作用,以雅砻江流域水风光蓄清洁能源基地下游部分电站为研究对象,考虑灵活调节能力,开展互补系统的日前优化运行策略研究.首先,为解决独立抽蓄的选址难和造价高问题,建立考虑梯级水电功能再造混合式抽蓄电站的梯级水风光蓄模型.针对传统风光模型预测精度低和主观选取长短期记忆(LSTM)网络超参数的局限性,采用粒子群算法(PSO)优化LSTM模型预测风光出力.随后,为充分挖掘互补系统的灵活调节潜力,构建了考虑互补系统经济效益和灵活调节裕度的日前多目标优化调度模型.采用法线边界交叉(NBI)法对构建的多目标问题进行求解,可获得分布均匀的Pareto最优解.最后,基于雅砻江流域实际情况进行算例分析,并通过不同场景分析验证了本文模型的有效性和抽蓄对系统灵活性运行的支撑作用,结果表明所提方法在兼顾系统收益的同时能充分挖掘系统的灵活调节潜力,保障系统的稳定运行.
夏金磊 , 唐翊杰 , 王玲玲 , 蒋传文 , 顾玖 . 考虑灵活调节能力的梯级水风光蓄互补系统日前优化运行策略[J]. 上海交通大学学报, 2025 , 59(7) : 889 -900 . DOI: 10.16183/j.cnki.jsjtu.2023.419
In the context of “carbon peaking and carbon neutrality”, the large-scale integration and consumption of wind and solar resources is an inevitable trend in future energy development. However, as the capacity of wind and solar power integration increases, the power system also requires more flexible resources to ensure secure operation. To investigate the flexible regulation of hydropower in the system, this study focuses on the downstream stations of the hydro-wind-solar-pumped storage clean energy base in the Yalong River Basin. Considering its flexible regulation capabilities, the study conducts day-ahead optimized operational strategy research for the complementary system. First, to address the challenges of site selection and high costs associated with independent pumped storage, steady-state models for hybrid pumped storage stations in a cascade hydro-wind-solar-pumped storage system are established. To overcome the limitations of traditional models such as low predictive accuracy and the subjective selection of long short-term memory (LSTM) hyperparameters, the particle swarm optimization (PSO) algorithm is used to optimize the parameters of LSTM and the optimized LSTM model is then used to forecast the output of wind and solar power. Next, in order to fully harness the flexible regulation potential of the complementary system, a multi-objective optimal dispatching model is developed considering the economic benefits and flexible regulation margin of the complementary system in the day-ahead time. The normal boundary intersection (NBI) method is employed to solve the multi-objective problem, which can obtain the Pareto optimal solutions with an even distribution. Finally, case studies are conducted based on the actual conditions of the Yalong River Basin. By analyzing different scenarios, the effectiveness of the proposed model and the supportive role of pumped storage in enhancing system flexibility are validated. The results demonstrate that the proposed approach not only balances system profits but also fully exploits the flexible regulation potential of the system, ensuring stable operation of the system.
| [1] | 习近平. 在第七十五届联合国大会一般性辩论上的讲话[EB/OL]. (2020-09-22) [2023-07-22]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm. |
| XI Jinping. Speech at the general debate of the 75th session of the United Nations general assembly[EB/OL]. (2020-09-22) [2023-07-22]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm. | |
| [2] | 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191. |
| ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191. | |
| [3] | 申建建, 程春田, 曹瑞, 等. 大规模水电消纳和调峰调度关键问题及研究进展[J]. 电力系统自动化, 2018, 42(11): 174-183. |
| SHEN Jianjian, CHENG Chuntian, CAO Rui, et al. Key issues and development in large-scale hydropower absorption and peak regulation[J]. Automation of Electric Power Systems, 2018, 42(11): 174-183. | |
| [4] | 国家发展改革委, 国家能源局. 《“十四五”现代能源体系规划》[EB/OL]. (2022-01-29) [2023-06-29]. http://www.nea.gov.cn/1310524241_16479412513081n.pdf. |
| National Development and Reform Commission, National Energy Administration. The 14th five-year plan for modern energy system[EB/OL]. (2022-01-29) [2023-06-29]. http://www.nea.gov.cn/1310524241_16479412513081n.pdf. | |
| [5] | 程春田. 碳中和下的水电角色重塑及其关键问题[J]. 电力系统自动化, 2021, 45(16): 29-36. |
| CHENG Chuntian. Function remolding of hydropower systems for carbon neutral and its key problems[J]. Automation of Electric Power Systems, 2021, 45(16): 29-36. | |
| [6] | 张晓辉, 梁军雪, 李茂林, 等. 计及风光出力预测误差的电力系统经济调度[J]. 电工电能新技术, 2018, 37(8): 40-47. |
| ZHANG Xiaohui, LIANG Junxue, LI Maolin, et al. Economic dispatch of power system considering prediction error of wind and photoelectric output[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(8): 40-47. | |
| [7] | 韩子娇, 李正文, 张文达, 等. 计及光伏出力不确定性的氢能综合能源系统经济运行策略[J]. 电力自动化设备, 2021, 41(10): 99-106. |
| HAN Zijiao, LI Zhengwen, ZHANG Wenda, et al. Economic operation strategy of hydrogen integrated energy system considering uncertainty of photovoltaic output power[J]. Electric Power Automation Equipment, 2021, 41(10): 99-106. | |
| [8] | JURASZ J. Modeling and forecasting energy flow between national power grid and a solar-wind-pumped-hydroelectricity (PV-WT-PSH) energy source[J]. Energy Conversion and Management, 2017, 136: 382-394. |
| [9] | MING B, LIU P, CHENG L, et al. Optimal daily generation scheduling of large hydro-photovoltaic hybrid power plants[J]. Energy Conversion and Management, 2018, 171: 528-540. |
| [10] | 王义民, 刘世帆, 李婷婷, 等. 雅砻江能源基地水风光互补短期调度运行模式对比研究[J]. 水利学报, 2023, 54(4): 439-450. |
| WANG Yimin, LIU Shifan, LI Tingting, et al. A comparative study on the short term operation modes of water-wind-solar energy complementary dispatching in Yalong river energy base[J]. Journal of Hydraulic Engineering, 2023, 54(4): 439-450. | |
| [11] | 朱晔, 兰贞波, 隗震, 等. 考虑碳排放成本的风光储多能互补系统优化运行研究[J]. 电力系统保护与控制, 2019, 47(10): 127-133. |
| ZHU Ye, LAN Zhenbo, KUI Zhen, et al. Research on optimal operation of wind-PV-ES complementary system considering carbon emission cost[J]. Power System Protection and Control, 2019, 47(10): 127-133. | |
| [12] | 李琛玺, 燕恒, 张浩, 等. 计及阶梯式碳交易的风-光-火-抽蓄联合系统日前优化调度[J]. 水利学报, 2023, 54(10): 1163-1176. |
| LI Chenxi, YAN Heng, ZHANG Hao, et al. Research on optimal scheduling of wind-photovoltaic-thermal-pumped storage combined power generation system considering ladder-type carbon trading[J]. Journal of Hydraulic Engineering, 2023, 54(10): 1163-1176. | |
| [13] | BILLINTON R, FOTUHI-FIRUZABAD M. A basic framework for generating system operating health analysis[J]. IEEE Transactions on Power Systems, 1994, 9(3): 1610-1617. |
| [14] | IREWA. Power system flexibility for the energy transition, part 1: Overview for policy makers[EB/OL]. (2018-11-13)[2023-07-19]. http://irena.Org/-/media/files/irena/agency/publication/2018/nov/irena_power_system_flexibilty_1_2018.Pdf, 2018-12. |
| [15] | 陈一鸣. 计及运行灵活性的配电网扩展规划方法研究[D]. 上海: 上海交通大学, 2020. |
| CHEN Yiming. Research on expansion planning method of distribution network considering operational flexibility[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
| [16] | 曹韵, 韩松, 荣娜, 等. 基于GCTMSA的梯级水火风光蓄储联合调度[J]. 电力系统保护与控制, 2023, 51(3): 108-116. |
| CAO Yun, HAN Song, RONG Na, et al. Dispatch of a cascade hydro-thermal-wind-photovoltaic-storage complementary system based on GCTMSA[J]. Power System Protection and Control, 2023, 51(3): 108-116. | |
| [17] | 丁紫玉, 方国华, 闻昕, 等. 考虑预报不确定性的水风光互补系统两阶段决策研究[J]. 水利水电技术(中英文), 2023, 54(4): 49-59. |
| DING Ziyu, FANG Guohua, WEN Xin, et al. Two-stage decision making model of a hydro-wind-photovoltaic hybrid system considering forecast[J]. Water Resources and Hydropower Engineering, 2023, 54(4): 49-59. | |
| [18] | 张俊涛, 甘霖, 程春田, 等. 大规模风光并网条件下水电灵活性量化及提升方法[J]. 电网技术, 2020, 44(9): 3227-3239. |
| ZHANG Juntao, GAN Lin, CHENG Chuntian, et al. Quantification and promotion of hydropower flexibility with large-scale wind and solar power incorporated into grid[J]. Power System Technology, 2020, 44(9): 3227-3239. | |
| [19] | 杨钰琪, 莫莉, 周建中, 等. 负荷频繁波动情景下梯级水电站实时调度策略[J]. 电力自动化设备, 2022, 42(7): 205-211. |
| YANG Yuqi, MO Li, ZHOU Jianzhong, et al. Real-time dispatching strategy of cascaded hydropower stations under frequent load fluctuation[J]. Electric Power Automation Equipment, 2022, 42(7): 205-211. | |
| [20] | 申建建, 王月, 程春田, 等. 水风光互补系统灵活性需求量化及协调优化模型[J]. 水利学报, 2022, 53(11): 1291-1303. |
| SHEN Jianjian, WANG Yue, CHENG Chuntian, et al. Flexibility demand quantification and optimal operation model of water-wind-solar complementary system[J]. Journal of Hydraulic Engineering, 2022, 53(11): 1291-1303. | |
| [21] | 李欢欢, 陈帝伊, 许贝贝. 水力发电灵活性对混合电力系统的调节影响[J]. 排灌机械工程学报, 2022, 40(2): 157-163. |
| LI Huanhuan, CHEN Diyi, XU Beibei. Hydro flexibility in regulating power fluctuation of hybrid system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(2): 157-163. | |
| [22] | 周建平, 杜效鹄, 周兴波. 面向新型电力系统的水电发展战略研究[J]. 水力发电学报, 2022, 41(7): 106-115. |
| ZHOU Jianping, DU Xiaohu, ZHOU Xingbo. Study on hydropower development strategy for new power systems[J]. Journal of Hydroelectric Engineering, 2022, 41(7): 106-115. | |
| [23] | 张俊涛, 程春田, 于申, 等. 水电支撑新型电力系统灵活性研究进展、挑战与展望[J]. 中国电机工程学报, 2024, 44(10): 3862-3885. |
| ZHANG Juntao, CHENG Chuntian, YU Shen, et al. Progress, challenges and prospects of research on hydropower supporting the flexibility of new power system[J]. Proceedings of the CSEE, 2024, 44(10): 3862-3885. | |
| [24] | CARTA J A, RAMIREZ P, VELAZQUEZ S. A review of wind speed probability distributions used in wind energy analysis case studies in the canary islands[J]. Renewable & Sustainable Energy Reviews, 2009, 13(5): 933-955. |
| [25] | 陈睿彬, 陆玲霞, 包哲静, 等. 电池储能系统参与用户侧削峰填谷的鲁棒优化调度策略[J]. 电力建设, 2022, 43(10): 66-76. |
| CHEN Ruibin, LU Lingxia, BAO Jingzhe, et al. Robust optimal dispatch strategy for battery energy storage system participating in user-side peak load shifting[J]. Electric Power Construction, 2022, 43(10): 66-76. | |
| [26] | 吴晗, 欧阳森, 梁炜焜, 等. 基于自适应步长ADMM的柔性配电网光-储协同分布鲁棒优化配置[J]. 电力自动化设备, 2023, 43(7): 35-43. |
| WU Han, OUYANG Sen, LIANG Weikun, et al. Distributionally robust optimization configuration of photovoltaic-energy storage coordination in flexible distribution network based on adaptive step size ADMM[J]. Electric Power Automation Equipment, 2023, 43(7): 35-43. | |
| [27] | 徐潇源, 王晗, 严正, 等. 能源转型背景下电力系统不确定性及应对方法综述[J]. 电力系统自动化, 2021, 45(16): 2-13. |
| XU Xiaoyuan, WANG Han, YAN Zheng, et al. Overview of power system uncertainty and its solutions under energy transition[J]. Automation of Electric Power Systems, 2021, 45(16): 2-13. | |
| [28] | 韩富佳, 王晓辉, 乔骥, 等. 基于人工智能技术的新型电力系统负荷预测研究综述[J]. 中国电机工程学报, 2023, 43(22): 8569-8592. |
| HAN Fujia, WANG Xiaohui, QIAO Ji, et al. Review on artificial intelligence based load forecasting research for the new-type power system[J]. Proceedings of the CSEE, 2023, 43(22): 8569-8592. | |
| [29] | 王岩, 陈耀然, 韩兆龙, 等. 基于互信息理论与递归神经网络的短期风速预测模型[J]. 上海交通大学学报, 2021, 55(9): 1080-1086. |
| WANG Yan, CHEN Yaoran, HAN Zhaolong, et al. Short-term wind speed forecasting model based on mutual information and recursive neural network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086. | |
| [30] | HOCHREITER S, JURGEN S. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
| [31] | 孙欣, 王思敏, 谢敬东, 等. 考虑多维影响因素的改进Transformer-PSO短期电价预测方法[J]. 上海交通大学学报, 2024, 58(9): 1420-1431. |
| SUN Xin, WANG Simin, XIE Jingdong, et al. Improved Transformer-PSO short-term electricity price forecasting method considering multidimensional influencing factors[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1420-1431. | |
| [32] | 冯雁敏, 陈守峰, 张雪源. 某混合式抽水蓄能电站综合效益研究[J]. 水电能源科学, 2012, 30(2): 159-163. |
| FENG Yanmin, CHEN Shoufeng, ZHANG Xue-yuan. Research on comprehensive benefit of mixed pumped storage power station[J]. Water Resources and Power, 2012, 30(2): 159-163. | |
| [33] | DAS I, DENNIS J E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization, 1998, 8(3): 631-657. |
| [34] | ROMAN C, ROSEHART W. Evenly distributed Pareto points in multi-objective optimal power flow[J]. IEEE Transactions on Power Systems, 2006, 21(2): 1011-1012. |
| [35] | 井志强, 王义民, 王学斌, 等. 水风光多能互补运行中多主体损益关系分析[J]. 水力发电学报, 2022, 41(11): 56-67. |
| JING Zhiqiang, WANG Yimin, WANG Xuebin, et al. Analysis of multi-energy profit and loss relationship in hydro-wind-solar power complementary operation[J]. Journal of Hydroelectric Engineering, 2022, 41(11): 56-67. |
/
| 〈 |
|
〉 |