基于Pasternak地基模型的H(t)-T受荷桩受力变形分析
收稿日期: 2023-04-20
修回日期: 2023-08-08
录用日期: 2023-11-17
网络出版日期: 2023-11-24
基金资助
国家自然科学基金(52068004)
Force and Deformation Analysis of H(t)-T Loaded Pile Based on Pasternak Foundation Model
Received date: 2023-04-20
Revised date: 2023-08-08
Accepted date: 2023-11-17
Online published: 2023-11-24
水平动荷载H(t)与扭矩T联合作用下的桩基受力变形较为复杂.为了更加准确地分析H(t)-T联合受荷桩的内力与位移,基于Pasternak地基模型考虑桩侧土体剪切效应;引入H(t)-T耦合因子,揭示多向荷载对桩身响应的影响机理;继而利用虚功原理推导桩身单元综合刚度矩阵;最后采用改进的有限杆单元法获得H(t)-T联合受荷桩内力与位移数值解;并与已有理论解和有限元模拟结果进行对比验证.参数分析表明:土体剪切效应可约束桩身水平位移,但对扭转变形影响较小;水平动荷载增强了桩身抗扭承载力,水平动荷载幅值从0.2Qu增大到1.0Qu时,桩顶扭转角减小了22.6%;增大动荷载无量纲频率会减小桩顶位移和桩身最大弯矩,外荷载动力效应随桩埋深增加而减弱;杆单元模型减少了单元划分数量和计算时间,可有效提高计算效率.
关键词: Pasternak地基模型; 联合受荷桩; 有限单元法; 水平动荷载; 扭矩
江杰 , 陈丽君 , 柴文成 , 艾永林 , 欧孝夺 , 龚健 . 基于Pasternak地基模型的H(t)-T受荷桩受力变形分析[J]. 上海交通大学学报, 2025 , 59(1) : 60 -69 . DOI: 10.16183/j.cnki.jsjtu.2023.146
The force and deformation of the pile foundation under the combined action of horizontal dynamic load H(t) and torque T are rather complicated. In order to more accurately analyze the internal force and displacement of the H(t)-T combined loaded piles, the shear effect of soil on the pile side is considered based on the Pasternak foundation model, and the H(t)-T coupling factor is introduced to reveal the influence mechanism of multi-directional load on pile response. Then, the virtual work principle is used to derive the comprehensive stiffness matrix of the pile element, and the modified finite beam element method is used to obtain the numerical solution of the internal force and displacement of the H(t)-T combined loaded piles. The results are compared with the results of the existing theoretical solutions and finite element simulation. The parametric analysis shows that soil shear effect can restrain the horizontal displacement of the pile, but has less effect on torsional deformation. The horizontal dynamic load enhances the torsional bearing capacity of the pile, and the torsional angle of the pile top is reduced by 22.6% when the horizontal dynamic load amplitude increases from 0.2Qu to 1.0Qu. Increasing the dimensionless frequency of the dynamic load will reduce the displacement of pile top and the maximum bending moment of pile body. The dynamic effect of simple harmonic load will be weakened with the increase of pile burial depth. The beam element model significantly reduces the number of discrete units and computation time, which can effectively improve the computational efficiency.
[1] | 金小凯, 陈锦剑, 廖晨聪. 波浪荷载对单桩承载力影响的水槽模拟试验研究[J]. 上海交通大学学报, 2021, 55(4): 365-371. |
JIN Xiaokai, CHEN Jinjian, LIAO Chencong. Wave flume simulation experiment on influence of wave load on bearing capacity of monopile[J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 365-371. | |
[2] | 张驰, 赖俊荣, 阮芳伟, 等. 海洋钢管桩发生溜桩的地层条件及桩侧动摩阻力计算方法[J]. 岩土力学, 2022, 43(Sup.2): 355-361. |
ZHANG Chi, LAI Junrong, RUAN Fangwei, et al. Strata condition for steel pipe pile runs and calculation method of dynamic skin friction of pile in ocean engineering[J]. Rock and Soil Mechanics, 2022, 43(Sup.2): 355-361. | |
[3] | HE K P, YE J H. Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study[J]. Renewable Energy, 2023, 205(2023): 200-221. |
[4] | BASILE F. Torsional response of pile groups[C]// Proceedings of the 11th DFI & EFFC International Conference on Geotechnical Challenges in Urban Regeneration. London, UK: Deep Foundations Institute, 2010. |
[5] | BASACK S, NIMBALKAR S. Numerical solution of single pile subjected to torsional cyclic load[J]. International Journal of Geomechanics, 2017, 17(8): 04017016. |
[6] | GAZETAS G, DOBRY R. Horizontal response of piles in layered soils[J]. Journal of Geotechnical Engineering, ASCE, 1984, 110(1): 20-40. |
[7] | 吴君涛, 王奎华, 孙梵, 等. 水平振动桩周围半无限空间土体受迫振动响应理论解[J]. 振动工程学报, 2020, 33(6): 1272-1281. |
WU Juntao, WANG Kuihua, SUN Fan, et al. Dynamic response of a half-space soil model excited by the known lateral pile vibration[J]. Journal of Vibration Engineering, 2020, 33(6): 1272-1281. | |
[8] | 黄茂松, 边学成, 陈育民, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2020, 53(8): 64-86. |
HUANG Maosong, BIAN Xuecheng, CHEN Yumin, et al. Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2020, 53(8): 64-86. | |
[9] | KONG L G. Behavior of pile groups subjected to torsion[D]. Hong Kong, China: The Hong Kong University of Science and Technology, 2006. |
[10] | NOGAMI T, NOVAK M. Resistance of soil to a horizontally vibrating pile[J]. Earthquake Engineering and Structure Dynamics, 1977, 5(3): 249-261. |
[11] | NOVAK M. Dynamic stiffness and damping of pile[J]. Canndian Geotechnical Journal, 1974, 11(4): 574-598. |
[12] | NOVAK M, NOGAMI T. Soil-pile interaction in horizontal vibration[J]. Earthquake Engineering and Structural Dynamics, 1977, 5(3): 263-281. |
[13] | PASTERNAK P L. Fundamentals of a new method of analyzing structures on an elastic foundation by means of two foundation onstants[M]. Moscow, Russia: Gosudarstvennoe Izdatelstro Liberaturi Po Stroitelstvui Arkhitekture, 1954. |
[14] | FWA T F, SHI X P, TAN S A. Use of Pasternak foundation model in concrete pavement analysis[J]. Journal of Transportation Engineering, 1996, 122(4): 323-328. |
[15] | 戴自航, 王云凤, 卢才金. 水平荷载单桩计算的综合刚度和双参数法杆系有限元数值解[J]. 岩石力学与工程学报, 2016, 35(10): 2115-2123. |
DAI Zihang, WANG Yunfeng, LU Caijin. Numerical solution of link finite element based on composite stiffness and bi-parameter method for computation of laterally loaded single pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2115-2123. | |
[16] | 朱彦鹏, 吴林平, 施多邦, 等. 基于Pasternak地基模型的非线性土抗力-桩身侧向位移曲线在基坑支护桩中的应用[J]. 岩土力学, 2022, 43(9): 2581-2591. |
ZHU Yanpeng, WU Linping, SHI Duobang, et al. Application of nonlinear soil resistance-pile lateral displacement curve based on Pasternak foundation model in foundation pit retaining piles[J]. Rock and Soil Mechanics, 2022, 43(9): 2581-2591. | |
[17] | 江杰, 柴文成, 欧孝夺, 等. 基于Timoshenko-Pasternak 模型的多向受荷桩水平动力响应分析[J]. 岩石力学与工程学报, 2022, 41(1): 172-185. |
JIANG Jie, CHAI Wencheng, OU Xiaoduo, et al. Horizontal dynamic response analysis of multi-directional loaded pile based on Timoshenko-Pasternak model[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 172-185. | |
[18] | 张玲, 岳梢, 赵明华, 等. 基于改进Pasternak地基模型的桩柱式桥墩受力变形分析[J]. 岩土工程学报, 2022, 44(10): 1817-1826. |
ZHANG Ling, YUE Shao, ZHAO Minghua, et al. Analysis of pile-column pier based on modified Pasternak foundation model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1817-1826. | |
[19] | HU Z H, MCVAY M, BLOOMQUIST D, et al. Influence of torque on lateral capacity of drilled shafts in sands[J]. Journal of Geotechnical and Geoenvironment Engineering, 2006, 132(4): 456-464. |
[20] | 孔令刚, 张利民. 群桩扭转非线性模型[J]. 岩土力学, 2009, 30(8): 2231-2236. |
KONG Linggang, ZHANG Limin. Nonlinear analysis of pile groups subjected to torsion[J]. Rock and Soil Mechanics, 2009, 30(8): 2231-2236. | |
[21] | GEORGIADIS K, SHEIL B. Effect of torsion on the undrained limiting lateral resistance of piles in clay[J]. Géotechnique, 2020, 70(8): 700-710. |
[22] | WU W B, YANG Z J, LIU X, et al. Horizontal dynamic response of pile in unsaturated soil considering its construction disturbance effect[J]. Ocean Engineering, 2022, 245: 110483. |
[23] | TANAHASHI H. Formulas for an infinitely long Bernoulli-Euler beam on the Pasternak model[J]. Journal of the Japanese Geotechnical Society, 2004, 44(5): 109-118. |
[24] | CUI C Y, LIANG Z M, XU C S, et al. Analytical solution for horizontal vibration of end-bearing single pile in radially heterogeneous saturated soil[J]. Applied Mathematical Modelling, 2023, 116: 65-83. |
[25] | 吕冰. 水平振动荷载作用下支盘桩动力特性研究[D]. 洛阳: 河南科技大学, 2015. |
Lü Bing. Study on dynamic characteristics of squeezed branch pile under horizontal vibration load[D]. Luoyang: Henan University of Science and Technology, 2015. | |
[26] | 邹新军, 徐洞斌, 王亚雄. 近海复杂环境下的H-M-T受荷桩内力位移分析[J]. 防灾减灾工程学报, 2014, 34(6): 736-741. |
ZOU Xinjun, XU Dongbin, WANG Yaxiong. Analysis of piles under H-M-T combined loading in offshore complex environment[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(6): 736-741. |
/
〈 |
|
〉 |