船舶海洋与建筑工程

海洋风电场尾流荷载作用下水平轴风力机结构动力响应

  • 祝怡情 ,
  • 吴锋 ,
  • 周岱 ,
  • 韩兆龙 ,
  • 卓杨 ,
  • 朱宏博 ,
  • 张凯
展开
  • 1.上海交通大学 船舶海洋与建筑工程学院, 上海 200240
    2.中交上海三航科学研究院有限公司, 上海 200032
祝怡情(1998—),硕士生,从事水平轴风力机相关研究.
周 岱,教授,博士生导师;E-mail:zhoudai@sjtu.edu.cn.

收稿日期: 2023-09-18

  修回日期: 2023-10-22

  录用日期: 2023-10-26

  网络出版日期: 2023-11-13

基金资助

国家自然科学基金(42076210);国家自然科学基金(52122110);上海市教委重大科技创新计划(2019-01-07-00-02-E00066)

Structural Dynamic Response of Offshore Horizontal Axis Wind Turbine Subjected to Wake-Induced Action

  • ZHU Yiqing ,
  • WU Feng ,
  • ZHOU Dai ,
  • HAN Zhaolong ,
  • ZHUO Yang ,
  • ZHU Hongbo ,
  • ZHANG Kai
Expand
  • 1. School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. CCCC Shanghai Third Harbor Engineering Science and Technology Research Institute Co., Ltd., Shanghai 200032, China

Received date: 2023-09-18

  Revised date: 2023-10-22

  Accepted date: 2023-10-26

  Online published: 2023-11-13

摘要

研究串列布置水平轴双风力机动力响应对保障风力机结构安全至关重要.基于计算流体动力学(CFD)方法,分析处于上游风力机近尾流区的下游风力机尾流场特性,获取双风力机气动荷载时程曲线.进而结合结构动力学与有限元数值方法,分析上、下游风力机结构的风致动力响应特性.研究发现:近尾流区尾流速度亏损显著,导致下游风力机的推力和扭矩分别减少54.94%和91.89%;同时,尾流湍流加剧了下游风力机的气动荷载的周期性波动.气动荷载波动性对下游风力机动力响应影响较小,其整体动力响应较弱,表现为塔顶推力方向的位移减小50.79%.研究成果可为海洋风电场风力机群结构气动响应分析提供技术参考.

本文引用格式

祝怡情 , 吴锋 , 周岱 , 韩兆龙 , 卓杨 , 朱宏博 , 张凯 . 海洋风电场尾流荷载作用下水平轴风力机结构动力响应[J]. 上海交通大学学报, 2025 , 59(8) : 1081 -1091 . DOI: 10.16183/j.cnki.jsjtu.2023.476

Abstract

The study of the dynamic response of a horizontal axis twin wind turbine in tandem arrangement is crucial for ensuring the structural safety of the wind turbine. Based on the computational fluid dynamics (CFD) method, the characteristics of the wake flow field of the downstream turbine, located in the near wake region of the upstream turbine, are analyzed. The time course curves of the aerodynamic loads on the twin turbines are obtained. Structural dynamics and finite element numerical methods are then used to analyze the wind-driven dynamic effects of the upstream and downstream turbine structures. It is found that the wake velocity deficit in the near wake region is significant, causing a reduction in thrust and torque of the downstream turbine by 54.94% and 91.89% respectively. Additionly, the wake turbulence increases cyclic fluctuation of aerodynamic load on the downstream turbine. While the aerodynamic load volatility has a small effect on the dynamic response of the downstream wind turbine, the overall dynamic response is weaker, and the displacement of the downstream wind turbine tower top in the thrust direction is reduced by 50.79%. The results provide technical references for the analysis of aerodynamic response of wind turbine cluster structures in offshore wind farms.

参考文献

[1] JOSELIN HERBERT G M, INIYAN S, SREEVALSAN E, et al. A review of wind energy technologies[J]. Renewable & Sustainable Energy Reviews, 2007, 11 (6): 1117-145.
[2] VARGAS S A, ESTEVES G R T, MA?AIRA P M, et al. Wind power generation: A review and a research agenda[J]. Journal of Cleaner Production, 2019, 218: 850-70.
[3] 王思聪. 中国海陆风电成本研究[J]. 宏观经济研究, 2019(8): 170-175.
  WANG Sicong. A study on onshore and offshore wind power cost in China[J]. Macroeconomics, 2019(8): 170-175.
[4] KAEWNIAM P, CAO M, ALKAYEM N F, et al. Recent advances in damage detection of wind turbine blades: A state-of-the-art review[J]. Renewable & Sustainable Energy Reviews, 2022, 167: 112723.
[5] 付杰, 施伟, 周惠蒙, 等. 固定式海上风力机实时混合试验加载方式研究[J]. 湖南大学学报(自然科学版), 2023, 50 (7): 160-168.
  FU Jie, SHI Wei, ZHOU Huimeng, et al. Study on loading mode of real-time hybrid test for fixed offshore wind turbine[J]. Journal of Hunan University (Natural Sciences), 2023, 50 (7): 160-168.
[6] 李飞. 极端风浪载荷激励下的海上漂浮式风力发电机组结构振动控制研究[D]. 重庆: 重庆大学, 2022.
  LI Fei. Study on structural vibration control of offshore floating wind turbine under extreme wind and wave loads[D]. Chongqing: Chongqing University, 2022.
[7] 柯世堂, 曹九发, 王珑, 等. 风力机塔架-叶片耦合模型风致响应时域分析[J]. 湖南大学学报(自然科学版), 2014, 41 (4): 87-93.
  KE Shitang, CAO Jiufa, WANG Long, et al. Time-domain analysis of the wind-induced responses of the coupled model of wind turbine tower-blade coupled system[J]. Journal of Hunan University (Natural Sciences), 2014, 41 (4): 87-93.
[8] 丁勤卫, 李春, 叶舟, 等. 风突变效应对风力机振动特性影响研究[J]. 振动与冲击, 2016, 35 (21): 47-52.
  DING Qinwei, LI Chun, YE Zhou, et al. Effects of wind gust on a wind turbine’s vibration characteristics[J]. Journal of Vibration and Shock, 2016, 35 (21): 47-52.
[9] 周文平, 唐胜利, 吕红. 风剪切和动态来流对水平轴风力机尾迹和气动性能的影响[J]. 中国电机工程学报, 2012, 32 (14): 122-127.
  ZHOU Wenping, TANG Shengli, Lü Hong. Effect of transient wind shear and dynamic inflow on the wake structure and performance of horizontal axis wind turbine[J]. Proceedings of the CSEE, 2012, 32 (14): 122-127.
[10] KIM S H, SHIN H K, JOO Y C, et al. A study of the wake effects on the wind characteristics and fatigue loads for the turbines in a wind farm[J]. Renewable Energy, 2015, 74: 536-543.
[11] CECCOTTI C, SPIGA A, BARTL J, et al. Effect of upstream turbine tip speed variations on downstream turbine performance[J]. Energy Procedia, 2016, 94: 478-486.
[12] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. USA: National Renewable Energy Lab, 2009.
[13] 张建, 杨庆山. 基于标准k-ε模型的平衡大气边界层模拟[J]. 空气动力学学报, 2009(6): 729-735.
  ZHANG Jian, YANG Qingshan. Application of standard k-ε model to simulate the equilibrium ABL[J]. Acta Aerodynamica Sinica, 2009 (6): 729-735.
[14] MIAO W P, LI C, YANG J, et al. Numerical investigation of the yawed wake and its effects on the downstream wind turbine[J]. Renewable Sustainable Energy, 2016, 8 (3): 033303.
[15] ZHANG Z H, KUANG L M, ZHAO Y S, et al. Numerical investigation of the aerodynamic and wake characteristics of a floating twin-rotor wind turbine under surge motion[J]. Energy Conversion and Management, 2023, 283: 116957
[16] 杨梦姚, 毛璐璐, 韩兆龙, 等. 三叶片H型垂直轴风力机风振与减振研究[J]. 上海交通大学学报, 2021, 55 (4): 347-356.
  YANG Mengyao, MAO Lulu, HAN Zhaolong, et al. Wind vibration and vibration reduction of an H-rotor type three-bladed vertical axis wind turbine[J]. Journal of Shanghai Jiao Tong University, 2021, 55 (4): 347-356.
[17] 何文君, 苏捷, 周岱, 等. 基于BESO算法的大型海洋垂直轴风力机支撑结构优化[J]. 上海交通大学学报, 2023, 57 (2): 127-137.
  HE Wenjun, SU Jie, ZHOU Dai, et al. Supporting structure optimization of offshore large-scale vertical axis wind turbine based on BESO algorithm[J]. Journal of Shanghai Jiao Tong University, 2023, 57 (2): 127-137.
[18] KATONA M C, ZIENKIEWICZ O C. A unified set of single step algorithms part 3: The beta-m method, a generalization of the Newmark scheme[J]. International Journal for Numerical Methods in Engineering, 1985, 21 (7): 1345-1359.
[19] NEWMARK NATHAN M. A method of computation for structural dynamics[J]. Journal of Engineering Mechanics Division, 1959, 85 (3): 67-94.
[20] 段鑫泽, 程萍, 万德成. 带偏航角串列式两风力机复杂尾流场数值模拟[J]. 海洋工程, 2019, 37 (2): 50-58.
  DUAN Xinze, CHENG Ping, WAN Decheng. Numerical study of wake interaction between two wind turbines operating in different yaw angles[J]. The Ocean Engineering, 2019, 37 (2): 50-58.
[21] MIAO W P, LI C, GIORGIO P, et al. Investigation of wake characteristics of a yawed HAWT and its impacts on the inline downstream wind turbine using unsteady CFD[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 60-71.
[22] WEN B R, TIAN X L, DONG X J, et al. Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine[J]. Energy, 2017, 141: 2054-2068.
[23] ZHANG W G, WANG Y Y, SHEN Y Z, et al. CFD studies of wake characteristics and power capture of wind turbines with trailing edge flaps[J]. IEEE Access, 2020, 8: 7349-7361.
[24] NAKHCHI M E, WIN N. A novel hybrid control strategy of wind turbine wakes in tandem configuration to improve power production[J]. Energy Conversion and Management, 2022, 260: 115575.
[25] TU Y, ZHANG K, HAN Z L, et al. Aerodynamic characterization of two tandem wind turbines under yaw misalignment control using actuator line model[J]. Ocean Engineering, 2023, 281: 114992.
[26] ONEL H C, TUNCER I H. Investigation of wind turbine wakes and wake recovery in a tandem configuration using actuator line model with LES[J]. Computers & Fluids, 2021, 220: 104872.
[27] DOSE B, RAHIMI H, HERRáEZ I, et al. Fluid-structure coupled computations of the NREL 5 MW wind turbine by means of CFD[J]. Renewable Energy, 2018, 129: 591-605.
文章导航

/