古船整体打捞中端板纵梁的变形

展开
  • 1.交通运输部上海打捞局,上海 200090, 2. 上海隧道工程有限公司,上海 200032
    2.上海隧道工程有限公司,上海 200032
周东荣(1978-),教授级高级工程师,主要从事打捞及海洋工程研究;E-mail: zdr@coes.cn.

收稿日期: 2023-07-07

  修回日期: 2023-07-25

  录用日期: 2023-08-22

  网络出版日期: 2023-11-10

基金资助

上海市科技创新行动计划社会发展科技攻关项目(21DZ1201102)

Deformation of Longitudinal Beam of End Plate for Integral Salvage of Ancient Ships

Expand
  • 1. Shanghai Salvage of the Ministry of Transport, Shanghai 200090, China
    2. Shanghai Tunnel Engineering Co., Ltd., Shanghai 200032, China

Received date: 2023-07-07

  Revised date: 2023-07-25

  Accepted date: 2023-08-22

  Online published: 2023-11-10

摘要

针对古沉船整体打捞工程,利用分布式光纤传感技术替代常规的变形监测手段,在“端板-纵梁”框架整体下放过程中对纵梁和端板进行变形监测.监测结果表明:“端板-纵梁”下放全过程中,端板的变形控制在1.5 mm内,变形量可以忽略;受定位桩与“端板-纵梁”间摩擦力的影响,纵梁最大变形量为50 mm;对定位桩打磨切割可有效减小纵梁变形量,纵梁最终变形量约为35 mm.

本文引用格式

周东荣, 朱小东, 魏良孟, 蒋哲, 庄欠伟, 袁一翔, 张弛, 袁玮皓 . 古船整体打捞中端板纵梁的变形[J]. 上海交通大学学报, 2023 , 57(S1) : 54 -59 . DOI: 10.16183/j.cnki.jsjtu.2023.S1.05

Abstract

For the integral salvage project of ancient sunken ships, the distributed optical fiber sensing technology is used instead of conventional deformation monitoring methods to monitor the deformation of the longitudinal beam and end plate during the overall lowering process of the “end plate longitudinal beam” frame. The monitoring results show that during the entire process of lowering the “end plate longitudinal beam”, the deformation of the end plate is controlled within 1.5 mm, and the deformation amount can be ignored. Due to the friction between the positioning pile and the “end plate longitudinal beam”, the maximum deformation of the longitudinal beam is 50 mm. Grinding and cutting the positioning pile can effectively reduce the deformation of the longitudinal beam, and the final deformation of the longitudinal beam is about 35 mm.

参考文献

[1] 聂亮冰. 南海Ⅰ号打捞工程方案选优与实施控制[D]. 广州: 华南理工大学, 2010.
[1] NIE Liangbing. Scheme selection and implementation control of Nanhai No.1 salvage project[D]. Guangzhou: South China University of Technology, 2010.
[2] 弓永军, 张增猛. 打捞工程[M]. 大连: 大连海事大学出版社, 2012.
[2] GONG Yongjun, ZHANG Zengmeng. Salvage operation[M]. Dalian: Dalian Maritime University Press, 2012.
[3] 姚宗, 王伟平, 蒋岩, 等. 液压吊力缓冲系统在“世越号”打捞工程中的作用评估[J]. 大连海事大学学报, 2018, 44(1): 48-58.
[3] YAO Zong, WANG Weiping, JIANG Yan, et al. Functional evaluation of hydraulic tension buffer system in SEWOL salvage project[J]. Journal of Dalian Maritime University, 2018, 44(1): 48-58.
[4] 刘靖. 用于沉船打捞的液压提升装置同步控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[4] LIU Jing. Study on synchronous control of hydraulic lifting device for shipwreck salvage[D]. Harbin: Harbin Engineering University, 2021.
[5] 吉晓朋, 张志创, 李克, 等. 分布式光纤监测技术在基坑监测中的应用[J]. 中原工学院学报, 2022, 33(6): 49-53.
[5] JI Xiaopeng, ZHANG Zhichuang, LI Ke, et al. Application of distributed optical fiber monitoring technology in foundation pit monitoring[J]. Journal of Zhongyuan University of Technology, 2022, 33(6): 49-53.
[6] 张中流, 何宁, 何斌, 等. 基于分布式光纤传感技术的结构受力测量新方法[J]. 仪器仪表学报, 2020, 41(9): 45-55.
[6] ZHANG Zhongliu, HE Ning, HE Bin, et al. New method to measure structure stress based on distributed optical fiber technology[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 45-55.
[7] 马斌斌. 软土基坑桩锚组合结构现场试验研究及数值模拟分析[D]. 南京: 南京理工大学, 2014.
[7] MA Binbin. Field test study and numerical simulation analysis of pile-anchor composite structure in soft soil foundation pit[D]. Nanjing: Nanjing University of Science and Technology, 2014.
[8] 刘永莉. 分布式光纤传感技术在边坡工程监测中的应用研究[D]. 杭州: 浙江大学, 2011.
[8] LIU Yongli. Research on application of distributed optical fiber sensing technology in slope engineering monitoring[D]. Hangzhou: Zhejiang University, 2011.
文章导航

/