足部特征点准确定位及形态参数自动测量方法
收稿日期: 2023-08-16
修回日期: 2023-10-05
录用日期: 2023-10-26
网络出版日期: 2023-11-06
基金资助
国家重点研发计划(2022YFC2009504)
Precise Foot Feature Point Localization and Automatic Parameters Measurement
Received date: 2023-08-16
Revised date: 2023-10-05
Accepted date: 2023-10-26
Online published: 2023-11-06
为了快速获得足部形态相关的参数信息并量化足部变形程度,提出一种能够准确定位足部特征点并自动计算足部形态特征参数的算法.首先,使用UPOD激光扫描仪获取93名受试者的足部三维模型.然后,采用随机采样一致性算法和主成分分析方法对模型坐标系进行对齐,结合足部形态特征识别并定位特征点,实现对足部长度、角度和围度形态参数的自动测量.为评估测量结果的准确性、重复性和一致性,使用平均绝对误差(MAE)、平均相对误差(MAPE)、组间相关系数(ICC)和Bland-Altman图进行分析.结果显示,足长和足宽的MAE小于2 mm,跖围、跗围和兜跟围的MAE小于4 mm,MAPE小于2%;3次重复测量的ICC均大于0.99,Bland-Altman图显示95%以上的散点位于一致性界限内.结果证明,该算法可以实现站立姿态下足部模型的坐标系自动对齐、特征点准确定位以及参数的精确测量;测量精度满足临床测量需求,具有较高的测量精度和可靠性;测量结果可为足型分类、智能辅具适配与个性化辅具设计提供数据支持,具有重要的临床应用价值.
纪冕 , 林艳萍 , 王冬梅 , 陈立 , 马昕 . 足部特征点准确定位及形态参数自动测量方法[J]. 上海交通大学学报, 2025 , 59(5) : 703 -710 . DOI: 10.16183/j.cnki.jsjtu.2023.397
In order to quickly obtain foot parameters and quantify the degree of foot deformation, an algorithm that can accurately locate foot feature points and automatically calculate foot parameters is proposed. First, a total of 93 patients participate and their foot models are obtained using the UPOD laser scanner. Then, the random sampling consensus algorithm and principal component analysis are used to align the foot coordinate system. The algorithm utilizes foot features to identify and locate feature points, enabling the parameter calculation of length, angle, and girth. The accuracy, repeatability, and consistency of the measurements are evaluated using mean absolute error (MAE), mean absolute percentage error (MAPE), interclass correlation coefficient (ICC), and Bland-Altman plots. The MAE of foot length and width is less than 2 mm, and for ball girth, instep girth, and heel girth, it is less than 4 mm. The MAPE is less than 2%, and the ICCs for the three replicates exceed 0.99. More than 95% of the scattered points in the Bland-Altman plots are within the consistency boundary. The results show that the proposed algorithm can automatically align the coordinate system, accurately locate feature points, and accurately measure foot parameters in the standing posture. The measurement accuracy meets clinical needs with high accuracy and reliability. The findings provide valuable data support for foot classification, intelligent assistive device adaptation, and personalized assistive device design, showing important clinical application potential.
| [1] | 孙云, 罗向东. 基于生物力学的足部保健产品研究[J]. 包装工程, 2019, 40(10): 239-242. |
| SUN Yun, LUO Xiangdong. Foot health product based on biomechanical characteristics[J]. Packaging Engineering, 2019, 40(10): 239-242. | |
| [2] | 袁佑芳. 重庆市社区老年人足部问题调查及护理干预研究[D]. 重庆: 重庆医科大学, 2020. |
| YUAN Youfang. Investigation on the foot problems of the elderly in the community of Chongqing and study on nursing intervention[D]. Chongqing: Chongqing Medical University, 2020. | |
| [3] | 胡智宏, 叶倩, 孔叶平. 矫形鞋垫的作用机制及临床研究进展[J]. 中国康复, 2016, 31(3): 229-231. |
| HU Zhihong, YE Qian, KONG Yeping. Mechanism and clinical research progress of orthopedic insole[J]. Chinese Journal of Rehabilitation, 2016, 31(3): 229-231. | |
| [4] | WANG H W, LIU F C, FAN R. A research on foot size measurement algorithm based on image[J]. Journal of Physics: Conference Series, 2021, 1903(1): 012004. |
| [5] | ROGATI G, LEARDINI A, ORTOLANI M, et al. Semi-automatic measurements of foot morphological parameters from 3D plantar foot scans[J]. Journal of Foot and Ankle Research, 2021, 14(1): 18. |
| [6] | WITANA C P, XIONG S P, ZHAO J H, et al. Foot measurements from three-dimensional scans: A comparison and evaluation of different methods[J]. International Journal of Industrial Ergonomics, 2006, 36(9): 789-807. |
| [7] | 刘国忠, 王伯雄, 史辉, 等. 激光线扫描足部三维测量方法及其应用[J]. 清华大学学报(自然科学版), 2008, 48(5): 820-823. |
| LIU Guozhong, WANG Boxiong, SHI Hui, et al. 3-D foot measurements using laser-linescanning[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(5): 820-823. | |
| [8] | KAASHKI N N, ROYEN R, DAI X X, et al. A deep-learning-based approach to automatically measuring foots from a 3D scan[C]// 2022 IEEE Asia-Pacific Conference on Computer Science and Data Engineering. Gold Coast, Australia: IEEE, 2022: 1-5. |
| [9] | SONG E, YOON S W, SON H, et al. Foot measurement using 3D scanning model[J]. International Journal of Fuzzy Logic and Intelligent Systems, 2018, 18(3): 167-174. |
| [10] | WU G, LI D, HU P P, et al. Automatic foot scanning and measurement based on multiple RGB-depth cameras[J]. Textile Research Journal, 2018, 88(2): 167-181. |
| [11] | WANG M, WANG X A, FAN Z C, et al. A 3D foot shape feature parameter measurement algorithm based on Kinect2[J]. EURASIP Journal on Image and Video Processing, 2018, 2018(1): 119. |
| [12] | TELFER S, WOODBURN J. The use of 3D surface scanning for the measurement and assessment of the human foot[J]. Journal of Foot and Ankle Research, 2010, 3: 19. |
| [13] | LOCHNER S J, HUISSOON J P, BEDI S S. Parametric design of custom foot orthotic model[J]. Computer-Aided Design and Applications, 2012, 9(1): 1-11. |
| [14] | XIONG S P, ZHAO J H, JIANG Z H, et al. A computer-aided design system for foot-feature-based shoe last customization[J]. The International Journal of Advanced Manufacturing Technology, 2010, 46(1): 11-19. |
| [15] | SIMON J, DOEDERLEIN L, MCINTOSH A S, et al. The Heidelberg foot measurement method: Development, description and assessment[J]. Gait & Posture, 2006, 23(4): 411-424. |
| [16] | 胡安铎, 苏显渝, 向立群, 等. 脚型三维测量与特征参数自动提取[J]. 四川大学学报(自然科学版), 2009, 46(6): 1691-1696. |
| HU Anduo, SU Xianyu, XIANG Liqun, et al. 3D measurement and feature parameters automatic extraction of foot[J]. Journal of Sichuan University (Natural Science Edition), 2009, 46(6): 1691-1696. | |
| [17] | 朱晓兰, 吴壮志. 三维足型参数自动测量系统设计与实现[J]. 体育科学, 2010, 30(9): 44-48. |
| ZHU Xiaolan, WU Zhuangzhi. Design and implementation of 3D foot size measurement system[J]. China Sport Science, 2010, 30(9): 44-48. | |
| [18] | 国家市场监督管理总局, 国家标准化管理委员会. 鞋楦尺寸检测方法: GB/T 3294—2018[S]. 北京: 中国标准出版社, 2018. |
| State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Test method of inspection for last sizes: GB/T 3294—2018[S]. Beijing: Standards Press of China, 2018. | |
| [19] | 毋戈. 基于多个深度相机的足部三维重建及形态分析[D]. 上海: 东华大学, 2017. |
| WU Ge. Three-dimensional reconstruction and shape analysis of human feet based on multiple depth cameras[D]. Shanghai: Donghua University, 2017. | |
| [20] | 丘理. 鞋楦设计与制作[M]. 第2版. 北京: 中国纺织出版社, 2015: 120-125. |
| QIU Li. Last designing and making[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2015: 120-125. | |
| [21] | KOO T K, LI M Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research[J]. Journal of Chiropractic Medicine, 2016, 15(2): 155-163. |
| [22] | CARRASCO A C, SILVA M F, GUENKA L C, et al. Non-radiographic validity and reliability measures for assessing foot types: A systematic review[J]. Foot and Ankle Surgery: Official Journal of the European Society of Foot and Ankle Surgeons, 2021, 27(8): 839-850. |
/
| 〈 |
|
〉 |