不同灌浆效果下黏土海床导管架桩基础的竖向承载特性离心试验
收稿日期: 2023-03-28
修回日期: 2023-05-16
录用日期: 2023-07-03
网络出版日期: 2023-07-21
基金资助
国家自然科学基金(52279106);上海市晨光计划(20CG15);上海市教委科研创新计划(2021-01-07-00-02-E00089)
Centrifuge Tests on Vertical Bearing Capacity of Jacket Pile Foundation in Clay Seabed Under Different Grouting Effects
Received date: 2023-03-28
Revised date: 2023-05-16
Accepted date: 2023-07-03
Online published: 2023-07-21
在40~60 m水深海域,海上风力发电机多使用导管架基础作为主要支撑结构.导管架通过水下高强灌浆与桩基础顶部连接,形成顶端密封段,共同承载竖向荷载.针对桩基顶部灌浆正常、灌浆不足、灌浆不良存在通孔3种不同灌浆效果开展离心模型试验,分析极限状态下基础的竖向承载力及灌浆段与桩身段的承载力分担比,并与现有理论计算方法进行对比.结果表明,灌浆密封顶盖的承载力取决于密封效果.对于灌浆密封顶盖灌浆正常和灌浆不足的基础,灌浆密封顶盖的承载力约占基础总承载力的25%~30%;灌浆不良存在通孔时,基础灌浆段承载力发挥较早且很快达到极限,其分担比远低于其他两者承载力.试验结果可为导管架桩基础设计中的灌浆段承载力计算提供参考依据.
宋俊霖 , 刘博 , 唐立恒 , 廖晨聪 . 不同灌浆效果下黏土海床导管架桩基础的竖向承载特性离心试验[J]. 上海交通大学学报, 2025 , 59(1) : 38 -47 . DOI: 10.16183/j.cnki.jsjtu.2023.110
Jacket foundations are often used as the main support structure for offshore wind turbines in waters with a depth of 40—60 meters. The jacket foundation is connected to the top of the pile foundation through underwater high-strength grouting to form a top sealing section, which together bears the vertical load. In this paper, centrifugal model tests are conducted for three different grouting effects: normal grouting at the top of a pile foundation, insufficient grouting, and poor grouting with through-holes. The vertical bearing capacity of the foundation and the bearing capacity sharing ratio between the grouting section and the pile body section under the limit state are analyzed, and compared with existing theoretical calculation methods. The results show that the bearing capacity of the grouting sealing cap depends on the sealing effect. For foundations with normal grouting and insufficient grouting of grouting sealing caps, the bearing capacity of grouting sealing caps accounts for approximately 25%—30% of the total bearing capacity of the foundation. When there are through-holes in poor grouting, the bearing capacity of the foundation grouting section develops early and quickly reaches its limit, whose sharing ratio is far lower than the other two bearing capacities. The test results in this paper can provide a reference for the calculation of bearing capacity in foundation design.
[1] | OH K Y, NAM W, RYU M S, et al. A review of foundations of offshore wind energy convertors: Current status and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 88: 16-36. |
[2] | 牛作民. 渤海湾海相淤泥土工程物理性质的初步研究[J]. 海洋地质与第四纪地质, 1986, 6(3): 35-42. |
NIU Zuomin. Geotechnical characteristics and origin of absorbability of marine puddly soil in Bohai Gulf[J]. Marine Geology & Quaternary Geology, 1986, 6(3): 35-42. | |
[3] | 姜明涛. 砂土中海上风电机组四筒导管架基础承载特性研究[D]. 天津: 天津大学, 2019. |
JIANG Mingtao. Study on bearing characteristics of four-tube jacket foundation in for offshore wind turbine in sand[D]. Tianjin: Tianjin University, 2019. | |
[4] | 朱荣华, 田振亚, 龙正如, 等. 海上风电机组导管架基础水下灌浆技术分析[J]. 风能, 2013(12): 104-107. |
ZHU Ronghua, TIAN Zhenya, LONG Zhengru, et al. Analysis of underwater grouting technology of offshore wind turbine jacket foundation[J]. Wind Energy, 2013(12): 104-107. | |
[5] | KIKUCHI Y, MIYUTANI M, YAMASHITA H. Vertical bearing capacity of large diameter steel pipe piles[M]// Advances in Deep Foundations. USA: CRC Press, 2007: 189-194. |
[6] | PARK J S, PARK D. Vertical bearing capacity of bucket foundation in sand overlying clay[J]. Ocean Engineering, 2017, 134: 62-76. |
[7] | 吴荣辉, 叶锦峰, 骆光杰, 等. 江苏海岸辐射沙洲地层中大直径钢管桩基础承载性能试验研究[J]. 海洋工程, 2021, 39(1): 121-132. |
WU Ronghui, YE Jinfeng, LUO Guangjie, et al. Experimental study on the bearing characteristics of steel pipe pile in radial sandbar of Jiangsu Province[J]. The Ocean Engineering, 2021, 39(1): 121-132. | |
[8] | ANSI/API. Geotechnical and foundation design considerations: ISO 19901-4: 2003 (modified)[S]. USA: API Recommended Practice, 2014. |
[9] | 包承纲, 饶锡保. 土工离心模型的试验原理[J]. 长江科学院院报, 1998, 15(2): 1-3. |
BAO Chenggang, RAO Xibao. Principle of the geotechnical centrifuge model test[J]. Journal of Yangtze River Scientific Research Institute, 1998, 15(2): 1-3. | |
[10] | 杜延龄, 韩连兵. 土工离心模型试验技术[M]. 北京: 中国水利水电出版社, 2010. |
DU Yanling, HAN Lianbing. Geotechnical centrifugal model test technology[M]. Beijing: China Water and Power Press, 2010. | |
[11] | STEWART D P, RANDOLPH M F. T-bar penetration testing in soft clay[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2230-2235. |
[12] | CHUNG S F, RANDOLPH M F, SCHNEIDER J A. Effect of penetration rate on penetrometer resistance in clay[J]. Journal of geotechnical and geoenvironmental engineering, 2008, 134(4): 552-553. |
[13] | HOUSE A, OLIVEIRA J, RANDOLPH M. Evaluating the coefficient of consolidation using penetration tests[J]. International Journal of Physical Modelling in Geotechnics, 2001, 1(3): 17-26. |
[14] | RANDOLPH M F. Analytical contributions to offshore geotechnical engineering[C]// Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, France: Presses des Ponts, 2013: 85-105. |
[15] | 刘祖德. 抗拔桩基础[M]. 北京: 中国建材工业出版社, 1996:642-674. |
LIU Zude. Uplift pile foundation[M]. Beijing: Chinese building materials industry publication, 1996: 642-674. | |
[16] | DET NORSKE VERITAS. Geotechnical design and installation of suction anchors in clay: DNV RP-E303[S]. Norway: GAN Grafisk, 2005. |
[17] | KAY S, GOURVENE S, PALIX E, et al. Intermediate Offshore Foundations[M]. USA: CRC Press, 2021. |
/
〈 |
|
〉 |