基于准比例谐振控制的模块化多电平矩阵变换器环流抑制策略
收稿日期: 2023-05-12
修回日期: 2023-06-29
录用日期: 2023-08-09
网络出版日期: 2023-08-22
基金资助
国家电网公司总部科技项目(4000-202218073A-1-1-ZN)
Circulating Current Suppression Strategy of Modular Multilevel Matrix Converter Based on Quasi-Proportional Resonant Control
Received date: 2023-05-12
Revised date: 2023-06-29
Accepted date: 2023-08-09
Online published: 2023-08-22
模块化多电平矩阵变换器(M3C)是分频输电系统中的核心装置.由于缺乏直流环节,所以不同频率的电气量在M3C内部直接耦合,导致M3C内部出现非常复杂的谐波,造成子模块均压困难,影响M3C的稳定运行.提出一种基于准比例谐振(PR)控制器的闭环控制策略,实现对M3C内部环流的抑制.首先,研究稳态时子模块电容纹波电压,详细分析子模块纹波电压与开关函数耦合产生谐波电流的机理,推导谐波环流的解析式,指出抑制环流的必要性.然后,针对4种频率成分的谐波环流设计并联的准PR环流抑制器,在抑制环流的同时减少桥臂电流的畸变,保障桥臂间电容电压均衡并且具备良好的动态性能.最后,在MATLAB/Simulink中搭建仿真模型,通过仿真验证控制策略的有效性.
关键词: 模块化多电平矩阵变换器; 分频输电系统; 电容纹波电压; 准比例谐振控制; 环流抑制
姜亚峰 , 李仪博 , 吴秋伟 , 刘沈全 , 吴小丹 , 周前 . 基于准比例谐振控制的模块化多电平矩阵变换器环流抑制策略[J]. 上海交通大学学报, 2025 , 59(2) : 242 -251 . DOI: 10.16183/j.cnki.jsjtu.2023.193
Modular multilevel matrix converter (M3C) is the core device of the fractional frequency transmission system. Due to the lack of direct current link, the electrical quantities of different frequencies are directly coupled inside the M3C, resulting in a complex harmonic condition, which makes it difficult to balance the capacitor voltage of the sub-module and affects the stable operation of the M3C. In this paper, a closed-loop control strategy based on quasi-proportional resonance (PR) controller is proposed to suppress the internal circulation of the M3C. First, the ripple voltage of the sub-module capacitor in steady state is studied. The mechanism of harmonic current generated by the coupling of sub-module ripple voltage and switching function is analyzed in detail. The analytical formula of harmonic circulating current is derived, and the necessity of suppressing the circulating current is pointed out. Then, a parallel quasi-PR circulation suppressor is designed for the harmonic circulation of four frequency components, which reduces the distortion of the bridge arm current while suppressing the circulating current, ensures the capacitor voltage balance between the bridge arms with a good dynamic performance. Finally, a simulation model is built in MATLAB / Simulink and the effectiveness of the control strategy is validated by simulation.
[1] | 余浩, 张哲萌, 彭穗, 等. 海上风电经柔性直流并网技术标准对比分析[J]. 上海交通大学学报, 2022, 56(4): 403-412. |
YU Hao, ZHANG Zhemeng, PENG Sui, et al. Comparative analysis of technical standards for offshore wind power via VSC-HVDC[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 403-412. | |
[2] | 王秀丽, 张小亮, 宁联辉, 等. 分频输电在海上风电并网应用中的前景和挑战[J]. 电力工程技术, 2017, 36(1): 15-19. |
WANG Xiuli, ZHANG Xiaoliang, NING Lianhui, et al. Application prospects and challenges of fractional frequency transmission system in offshore wind power integration[J]. Electric Power Engineering Technology, 2017, 36(1): 15-19. | |
[3] | 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459-5466. |
WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466. | |
[4] | LIU S Q, WANG X F, MENG Y Q, et al. A decoupled control strategy of modular multilevel matrix converter for fractional frequency transmission system[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 2111-2121. |
[5] | 冯双, 韦超凡, 雷家兴, 等. 面向分频海上风电系统的模块化多电平矩阵变换器混合建模与控制[J]. 中国电机工程学报, 2022, 42(4): 1546-1558. |
FENG Shuang, WEI Chaofan, LEI Jiaxing, et al. Hybrid modeling and control of modular multilevel matrix converter for offshore fractional frequency transmission system[J]. Proceedings of the CSEE, 2022, 42(4): 1546-1558. | |
[6] | KAMMERER F, KOLB J, BRAUN M. Fully decoupled current control and energy balancing of the modular multilevel matrix converter[C]// 2012 15th International Power Electronics and Motion Control Conference. Novi Sad, Serbia: IEEE, 2012: LS2a.3-1-LS2a. 3-8. |
[7] | 孙玉巍, 王童, 付超, 等. 适用于海上风电分频输电的模块化多电平矩阵变换器故障穿越控制策略[J]. 高电压技术, 2023, 49(1): 19-30. |
SUN Yuwei, WANG Tong, FU Chao, et al. Fault ride-through control strategy of modular multilevel matrix converter for fractional frequency transmission system[J]. High Voltage Engineering, 2023, 49(1): 19-30. | |
[8] | KAMMERER F, GOMMERINGER M, KOLB J, et al. Energy balancing of the modular multilevel matrix converter based on a new transformed arm power analysis[C]// 2014 16th European Conference on Power Electronics and Applications. Lappeenranta, Finland: IEEE, 2014: 1-10. |
[9] | KAWAMURA W, AKAGI H. Control of the modular multilevel cascade converter based on triple-star bridge-cells (MMCC-TSBC) for motor drives[C]// 2012 IEEE Energy Conversion Congress and Exposition. Raleigh, USA: IEEE, 2012: 3506-3513. |
[10] | KAWAMURA W, HAGIWARA M, AKAGI H. A broad range of frequency control for the modular multilevel cascade converter based on triple-star bridge-cells (MMCC-TSBC)[C]// 2013 IEEE Energy Conversion Congress and Exposition. Denver, USA: IEEE, 2013: 4014-4021. |
[11] | 陆立文, 吴小丹, 周前, 等. 双端柔性低频输电系统无扰动并网控制策略[J]. 电力工程技术, 2022, 41(5): 31-39. |
LU Liwen, WU Xiaodan, ZHOU Qian, et al. Undisturbed grid connection control strategy for two-terminal flexible low-frequency transmission system[J]. Electric Power Engineering Technology, 2022, 41(5): 31-39. | |
[12] | DORN J, HUANG H, RETZMANN D. A new multilevel voltage-sourced converter topology for HVDC applications[C]// 2008 International Council on Large Electric Systems. Paris, France: IEEE, 2008: 1-8. |
[13] | 张建坡, 赵成勇. 模块化多电平换流器环流及抑制策略研究[J]. 电工技术学报, 2013, 28(10): 328-336. |
ZHANG Jianpo, ZHAO Chengyong. Research on circulation current and suppressing strategy of modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 328-336. | |
[14] | TU Q R, XU Z, XU L. Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters[J]. IEEE Transactions on Power Delivery, 2011, 26(3): 2009-2017. |
[15] | 马洲俊, 王勇, 王杰, 等. 柔性控制器MMC子模块最优冗余数量双重协同优化方法[J]. 上海交通大学学报, 2022, 56(3): 325-332. |
MA Zhoujun, WANG Yong, WANG Jie, et al. A dual cooperative optimization for optimal redundancy quantity of MMC submodules of flexible controller[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 325-332. | |
[16] | ?NGQUIST L, ANTONOPOULOS A, SIEMASZKO D, et al. Inner control of modular multilevel converters-An approach using open-loop estimation of stored energy[C]// The 2010 International Power Electronics Conference-ECCE ASIA. Sapporo, Japan: IEEE, 2010: 1579-1585. |
[17] | LI Z X, WANG P, CHU Z F, et al. A novel inner current suppressing method for modular multilevel converters[C]// 2012 IEEE Energy Conversion Congress and Exposition. Raleigh, USA: IEEE, 2012: 4506-4512. |
[18] | 李峰, 王广柱. 模块化多电平矩阵变换器电容电压纹波稳态分析[J]. 中国电机工程学报, 2013, 33(24): 52-58. |
LI Feng, WANG Guangzhu. Steady-state analysis of sub-modular capacitor voltage ripple in modular multilevel matrix converters[J]. Proceedings of the CSEE, 2013, 33(24): 52-58. | |
[19] | 孙玉巍, 常静恬, 付超, 等. 分频输电系统模块化多电平矩阵变换器谐波特性分析[J]. 电力工程技术, 2022, 41(5): 21-30. |
SUN Yuwei, CHANG Jingtian, FU Chao, et al. Harmonic characteristics analysis of modular multilevel matrix converter for fractional frequency transmission system[J]. Electric Power Engineering Technology, 2022, 41(5): 21-30. | |
[20] | LUO J J, ZHANG X P, XUE Y, et al. Harmonic analysis of modular multilevel matrix converter for fractional frequency transmission system[J]. IEEE Transactions on Power Delivery, 2020, 35(3): 1209-1219. |
[21] | 吴小丹. 面向低频海上风电送出的模块化多电平矩阵变换器输入输出侧解耦控制[J]. 电网技术, 2022, 46(8): 2909-2923. |
WU Xiaodan. Input/output side decoupling control of modular multilevel matrix converter for low-frequency offshore wind power transmission[J]. Power System Technology, 2022, 46(8): 2909-2923. | |
[22] | YAO W X, LIU J, LU Z Y. Distributed control for the modular multilevel matrix converter[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3775-3788. |
[23] | 卢宇, 吴小丹, 雷家兴, 等. 电网不平衡工况下模块化多电平矩阵变换器控制策略[J]. 电力工程技术, 2023, 42(4): 195-205. |
LU Yu, WU Xiaodan, LEI Jiaxing, et al. Control strategy of the modular multilevel matrix converter under unbalanced grid condition[J]. Electric Power Engineering Technology, 2023, 42(4): 195-205. | |
[24] | 支琴, 吴映阳, 金之俭, 等. 基于比例积分谐振调节的光伏并网逆变器电流控制方法[J]. 上海交通大学学报, 2018, 52(12): 1642-1648. |
ZHI Qin, WU Yingyang, JIN Zhijian, et al. Current control strategy for photovoltaic grid-connected inverter based on PIR regulator[J]. Journal of Shanghai Jiao Tong University, 2018, 52(12): 1642-1648. | |
[25] | 徐政, 张哲任. 低频输电技术原理之一——M3C的数学模型与等效电路[J]. 浙江电力, 2021, 40(10): 13-21. |
XU Zheng, ZHANG Zheren. Principles of low frequency power transmission technology: Part 1—Mathematical model and equivalent circuit of M3C[J]. Zhejiang Electric Power, 2021, 40(10): 13-21. |
/
〈 |
|
〉 |