水下管口附近脉动气泡溃灭及射流特性实验和数值研究
收稿日期: 2023-04-03
修回日期: 2023-05-18
录用日期: 2023-06-29
网络出版日期: 2023-07-20
基金资助
国家自然科学基金(12072087);黑龙江省自然科学基金(YQ2022E017);国家级大学生创新创业训练计划(202210217185)
Pulsating Bubble Collapse and Jet Characteristics Near the Nozzle of Underwater Tube
Received date: 2023-04-03
Revised date: 2023-05-18
Accepted date: 2023-06-29
Online published: 2023-07-20
通过实验和数值方法研究水下管口附近脉动气泡溃灭及射流特性.在实验方面,采用电火花放电技术产生厘米级脉动气泡,并利用高速摄影捕捉气泡的瞬态动力学行为;在数值方面,采用基于势流理论的边界积分方法模拟气泡与管壁的耦合作用.实验发现,脉动气泡在管口附近溃灭过程中会产生指向管内的射流,进而威胁水中管道设备的结构安全,数值模拟结果和实验现象吻合良好.通过对气泡距管口距离与管口半径之比γ和气泡的最大半径与管口半径之比λ两个无量纲参数进行系统研究发现:当γ≤1.5时,气泡溃灭阶段只会产生指向管内的射流,当γ>1.5时,气泡产生指向管内射流的趋势随λ的增加而增加;总体而言,气泡产生向下射流的速度随λ的增加而增加,随γ的增大先增大后减小.当γ<0时,射流速度随λ和γ的变化很小,但射流宽度随两者的增加而增加;当γ>0时,射流速度随γ的增大先增大后减小.研究结论为水下管口附近气泡溃灭的动力学行为提供了重要参考.
张越尧 , 乔峰 , 吕详 , 张天源 , 韩蕊 , 李帅 . 水下管口附近脉动气泡溃灭及射流特性实验和数值研究[J]. 上海交通大学学报, 2025 , 59(1) : 99 -110 . DOI: 10.16183/j.cnki.jsjtu.2023.118
In this paper, the characteristics of a pulsating bubble collapse near the nozzle of an underwater tube were investigated both experimentally and numerically. The experiments involved generating pulsating bubbles using the electric spark discharge technology and capturing their transient behavior by high-speed photography. A boundary integral method based on potential flow theory was used to simulate the coupling between the bubble and the tube in the numerical simulation. The results show that the collapsing bubble can produce a jet directed towards the tube, which poses a safety threat to the pipeline equipment. The numerical simulation results and experimental phenomena are in good agreement. In addition, a systematic study was conducted of two dimensionless parameters, i.e., the ratio of bubble distance from the tube nozzle and the tube nozzle radius γ and the ratio of the maximum radius of the bubble and the tube nozzle radius λ. The findings indicate that when γ≤1.5, bubbles will only produce jets pointing into the tube during the collapse phase, and when γ>1.5, the tendency for bubbles to produce jets pointing into the tube increases as λ increases. Moreover, the maximum velocity of the downward jet increases with the increase of λ, and increases and then decreases with the increase of γ. Additionally, the maximum velocity of the downward jet generally increases with the increase of λ and increases and then decreases with the increase of γ. This study provides valuable insights into the dynamic behavior of bubble collapse near the nozzle of a submerged tube, which can provide safety measures for pipeline equipment.
[1] | LUO X W, JI B, TSUJIMOTO Y. A review of cavitation in hydraulic machinery[J]. Journal of Hydrodynamics, Ser B, 2016, 28(3): 335-358. |
[2] | DOLLET B, MARMOTTANT P, GARBIN V. Bubble dynamics in soft and biological matter[J]. Annual Review of Fluid Mechanics, 2019, 51: 331-355. |
[3] | KREFTING D, METTIN R, LAUTERBORN W. High-speed observation of acoustic cavitation erosion in multibubble systems[J]. Ultrasonics Sonochemistry, 2004, 11(3/4): 119-123. |
[4] | 季斌, 程怀玉, 黄彪, 等. 空化水动力学非定常特性研究进展及展望[J]. 力学进展, 2019, 49(1): 428-479. |
JI Bin, CHENG Huaiyu, HUANG Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation[J]. Advances in Mechanics, 2019, 49(1): 428-479. | |
[5] | GONDAL T M, HAMEED Z, SHAH M U, et al. Cavitation phenomenon and its effects in francis turbines and amassed adeptness of hydel power plant[C]// 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies. Sukkur, Pakistan: IEEE, 2019: 1-9. |
[6] | 梁武科, 艾改改, 董玮, 等. 空化对轴流泵叶轮流固耦合特性的影响[J]. 大电机技术, 2021(5): 92-98. |
LIANG Wuke, AI Gaigai, DONG Wei, et al. Effect of cavitation on fluid-solid coupling characteristics of axial flow pump impeller[J]. Large Electric Machine and Hydraulic Turbine, 2021(5): 92-98. | |
[7] | ZHANG B, ZHAO C X, HONG H C, et al. Study of the cavitation phenomenon inside roller vane pump[J]. International Journal of Fluid Machinery and Systems, 2021, 14(1): 42-51. |
[8] | 张伟, 蒋朝飞, 叶亚楠, 等. 蒸汽浸没射流冷凝特性实验研究[J]. 上海交通大学学报, 2022, 56(1): 1-13. |
ZHANG Wei, JIANG Chaofei, YE Ya’nan, et al. Experimental study on condensation of steam jet injection in submerged condition[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 1-13. | |
[9] | 刘家庆, 刘新星, 孙中宁, 等. 含不凝性气体蒸汽浸没射流冷凝压力振荡实验研究[J]. 原子能科学技术, 2019, 53(2): 312-318. |
LIU Jiaqing, LIU Xinxing, SUN Zhongning, et al. Experimental investigation on pressure oscillation of submerged steam jet condensation with non-condensable gas[J]. Atomic Energy Science and Technology, 2019, 53(2): 312-318. | |
[10] | REN Z B, LI B, XU P, et al. Cavitation bubble dynamics in a funnel-shaped tube[J]. Physics of Fluids, 2022, 34(9): 093313. |
[11] | KIM D, KIM D. Underwater bubble collapse on a ridge-patterned structure[J]. Physics of Fluids, 2020, 32(5): 053312. |
[12] | LI S M, LIU Y L, WANG Q X, et al. Dynamics of a buoyant pulsating bubble near two crossed walls[J]. Physics of Fluids, 2021, 33(7): 073310. |
[13] | YUAN H, PROSPERETTI A. The pumping effect of growing and collapsing bubbles in a tube[J]. Journal of Micromechanics and Microengineering, 1999, 9(4): 402-413. |
[14] | ORY E, YUAN H, PROSPERETTI A, et al. Growth and collapse of a vapor bubble in a narrow tube[J]. Physics of Fluids, 2000, 12(6): 1268-1277. |
[15] | 马兆伟, 李华, 刘卫, 等. 文丘里气泡发生器气泡在喉部和扩张段的运动和碎化研究[J]. 核技术, 2018, 41(11): 71-76. |
MA Zhaowei, LI Hua, LIU Wei, et al. Study on the bubble movement and breakup of Venture-type bubble generator in throat and expansion section[J]. Nuclear Techniques, 2018, 41(11): 71-76. | |
[16] | 徐明, 胡国良, 邹俊, 等. 空泡在管道中的动力学行为研究[J]. 水动力学研究与进展A辑, 2014, 29(4): 385-392. |
XU Ming, HU Guoliang, ZOU Jun, et al. Dynamic behavior study of the cavitation bubble in the tube[J]. Chinese Journal of Hydrodynamics, 2014, 29(4): 385-392. | |
[17] | NI B Y, ZHANG A M, WANG Q X, et al. Experimental and numerical study on the growth and collapse of a bubble in a narrow tube[J]. Acta Mechanica Sinica, 2012, 28(5): 1248-1260. |
[18] | ZHANG G F, ZHU Y J, YANG J M, et al. Liquid jets produced by an immersed electrical explosion in round tubes[J]. Physics of Fluids, 2017, 29(6): 062102. |
[19] | LI H C, HUANG J A, WU X Q, et al. Dynamic behaviors of a laser-induced bubble and transition mechanism of collapse patterns in a tube[J]. AIP Advances, 2020, 10(3): 035210. |
[20] | WANG S P, WANG Q X, ZHANG A M, et al. Experimental observations of the behaviour of a bubble inside a circular rigid tube[J]. International Journal of Multiphase Flow, 2019, 121: 103096. |
[21] | XU P, LIU S H, ZUO Z G, et al. On the criteria of large cavitation bubbles in a tube during a transient process[J]. Journal of Fluid Mechanics, 2021, 913: R6. |
[22] | WANG Z C, LIU S H, LI B, et al. Large cavitation bubbles in the tube with a conical-frustum shaped closed end during a transient process[J]. Physics of Fluids, 2022, 34(6): 063312. |
[23] | ZHANG A M, LI S M, CUI P, et al. A unified theory for bubble dynamics[J]. Physics of Fluids, 2023, 35(3): 033323. |
[24] | HAN R, ZHANG A M, TAN S C, et al. Interaction of cavitation bubbles with the interface of two immiscible fluids on multiple time scales[J]. Journal of Fluid Mechanics, 2022, 932: A8. |
[25] | 胡振宇, 曹卓尔, 李帅, 等. 水中高压脉动气泡与浮体流固耦合特性研究[J]. 力学学报, 2021, 53(4): 944-961. |
HU Zhenyu, CAO Zhuoer, LI Shuai, et al. Fluid-structure interaction between a high-pressure pulsating bubble and a floating structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 944-961. | |
[26] | LI S M, ZHANG A M, WANG Q X, et al. The jet characteristics of bubbles near mixed boundaries[J]. Physics of Fluids, 2019, 31(10): 107105. |
[27] | BEST J P, KUCERA A. A numerical investigation of non-spherical rebounding bubbles[J]. Journal of Fluid Mechanics, 1992, 245: 137. |
[28] | 李帅, 张阿漫, 韩蕊. 水中高压脉动气泡水射流形成机理及载荷特性研究[J]. 力学学报, 2019, 51(6): 1666-1681. |
LI Shuai, ZHANG Aman, HAN Rui. The mechanism of jetting behaviors of an oscillating bubble[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1666-1681. | |
[29] | LI S, HAN R, ZHANG A M, et al. Analysis of pressure field generated by a collapsing bubble[J]. Ocean Engineering, 2016, 117: 22-38. |
/
〈 |
|
〉 |