基于改进蜜獾算法的波能转换器阵列优化
收稿日期: 2023-02-01
修回日期: 2023-05-10
录用日期: 2023-05-26
网络出版日期: 2023-06-07
基金资助
国家自然科学基金(61963020);国家自然科学基金(62263014);国家自然科学基金(52207109)
Array Optimization of Wave Energy Converters via Improved Honey Badger Algorithm
Received date: 2023-02-01
Revised date: 2023-05-10
Accepted date: 2023-05-26
Online published: 2023-06-07
针对波浪能转换器(WEC)阵列发电效率提升问题,提出一种基于改进蜜獾算法的三系WEC阵列优化方法.首先,为克服原始蜜獾算法(HBA)收敛速度慢、收敛精度低等缺陷,引入佳点集初始化、混沌机制和蜜獾种群变异3种策略对原始HBA进行改进.此外,为了验证改进蜜獾算法(IHBA)的先进性和有效性,开展2个浮标、10个浮标和20个浮标3个不同规模的WEC阵列优化实验.2浮标阵列仿真结果表明,WEC阵列优化存在多组最优解,且IHBA、HBA、遗传算法和粒子群优化算法都能以不同速度找到最优解.然而,随着WEC阵列规模的增大,3种对比算法都会陷入局部最优解.相反地,IHBA依然表现出较强寻优能力并能搜寻到全局最优解.最后,IHBA所获10浮标和20浮标的阵列q因子分别高达1.059和0.968,远优于其他3种算法.
杨博 , 刘炳强 , 陈义军 , 武少聪 , 束洪春 , 韩一鸣 . 基于改进蜜獾算法的波能转换器阵列优化[J]. 上海交通大学学报, 2024 , 58(9) : 1465 -1478 . DOI: 10.16183/j.cnki.jsjtu.2023.030
In order to enhance the generation efficiency of wave energy converter (WEC) arrays, an optimization method for three-tether WEC array based on an improved honey badger algorithm is proposed. First, to overcome the shortcomings of the primal honey badger algorithm (HBA), such as slow convergence speed and low convergence accuracy, three improvement strategies are introduced, i.e., good point set initialization, chaos mechanism, and honey badger population mutation. Then, three wave farms including 2-buoy, 10-buoy, and 20-buoy are tested to verify the advancement and effectiveness of the improved honey badger algorithm (IHBA). The simulation results of the 2-buoy array demonstrate that there are multiple groups of optimal solutions in WEC array optimization. Furthermore, IHBA, HBA, genetic algorithm, and particle swarm optimization can find these optimal solutions at different speeds. Nevertheless, with increasing size of the WEC array, three comparative algorithms fall into local optima solutions. On the contrary, IHBA still exhibits a strong optimization ability and can seek global optima solutions. Finally, the q-factor values obtained by IHBA in 10-buoy and 20-buoy arrays reach 1.059 and 0.968, respectively, which are dramatically larger than those of other algorithms.
[1] | CHEN Y J, YANG B, GUO Z X, et al. Dynamic reconfiguration for TEG systems under heterogeneous temperature distribution via adaptive coordinated seeker[J]. Protection & Control of Modern Power Systems, 2022, 7(1): 1-19. |
[2] | YANG B, LIU B Q, ZHOU H Y, et al. A critical survey of technologies of large offshore wind farm integration: Summary, advances, and perspectives[J]. Protection & Control of Modern Power Systems, 2022, 7(1): 17. |
[3] | YANG B, WU S C, ZHANG H, et al. Wave energy converter array layout optimization: A critical and comprehensive overview[J]. Renewable & Sustainable Energy Reviews, 2022, 167: 112668. |
[4] | SIM J, KIM C S. The value of renewable energy research and development investments with default consideration[J]. Renewable Energy, 2019, 143: 530-539. |
[5] | FANG H W, WANG D. Design of permanent magnet synchronous generators for wave power generation[J]. Transactions of Tianjin University, 2016, 22(5): 396-402. |
[6] | 吴明东, 盛松伟, 张亚群, 等. 海洋波浪能浮标发展现状及前景[J]. 新能源进展, 2021, 9(1): 42-47. |
WU Mingdong, SHENG Songwei, ZHANG Yaqun, et al. Development status and prospect of ocean wave energy buoy[J]. Advances in New & Renewable Energy, 2021, 9(1): 42-47. | |
[7] | 谭美秀, 盛松伟, 王振鹏, 等. 冲击水轮机式小型波浪能转换系统研究[J]. 太阳能学报, 2021, 42(9): 446-451. |
TAN Meixiu, SHENG Songwei, WANG Zhenpeng, et al. Research on small wave energy converter system of pelton turbine[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 446-451. | |
[8] | 史宏达, 曲娜, 曹飞飞, 等. 振荡浮子波能发电装置浮子运动性能的试验研究[J]. 中国海洋大学学报(自然科学版), 2017, 47(6): 124-130. |
SHI Hongda, QU Na, CAO Feifei, et al. Experimental study on movement performance of oscillating buoys WEC[J]. Periodical of Ocean University of China, 2017, 47(6): 124-130. | |
[9] | 黄磊, 胡敏强, 余海涛, 等. 直驱式波浪发电用全超导初级励磁直线发电机的设计与分析[J]. 电工技术学报, 2015, 30(2): 80-86. |
HUANG Lei, HU Minqiang, YU Haitao, et al. Design and analysis of a fully-superconducting primary-excitation linear generator for direct-driven wave energy generation[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 80-86. | |
[10] | O’SULLIVAN A C M, SHENG W N, LIGHTBODY G. An analysis of the potential benefits of centralised predictive control for optimal electrical power generation from wave energy arrays[J]. IEEE Transactions on Sustainable Energy, 2018, 9(4): 1761-1771. |
[11] | 陈佳, 兰飞, 郭昊霖, 等. 波浪能发电控制技术研究综述[J]. 电力自动化设备, 2023, 43(6): 124-136. |
CHEN Jia, LAN Fei, GUO Haolin, et al. Review of wave energy power generation control technology research[J]. Electric Power Automation Equipment, 2023, 43(6): 124-136. | |
[12] | 刘华兵, 彭爱武, 赵凌志. 波浪发电系统功率控制方法综述[J]. 电工电能新技术, 2020, 39(5): 49-58. |
LIU Huabing, PENG Aiwu, ZHAO Lingzhi. Summary of power control methods for wave power generation system[J]. Advanced Technology of Electrical Engineering & Energy, 2020, 39(5): 49-58. | |
[13] | WU J H, SHEKH S, SERGIIENKO N Y, et al. Fast and effective optimisation of arrays of submerged wave energy converters[C]//Proceedings of the Genetic and Evolutionary Computation Conference 2016. Denver, USA: ACM, 2016: 1045-1052. |
[14] | SHARP C, DUPONT B. Wave energy converter array optimization: A genetic algorithm approach and minimum separation distance study[J]. Ocean Engineering, 2018, 163: 148-156. |
[15] | BABARIT A. On the park effect in arrays of oscillating wave energy converters[J]. Renewable Energy, 2013, 58: 68-78. |
[16] | NESHAT M, MIRJALILI S, SERGIIENKO N Y, et al. Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia[J]. Energy, 2022, 239: 122463. |
[17] | BUDAL K. Theory for absorption of wave power by a system of interacting bodies[J]. Journal of Ship Research, 1977, 21(4): 248-254. |
[18] | CHILD B F M, VENUGOPAL V. Optimal configurations of wave energy device arrays[J]. Ocean Engineering, 2010, 37(16): 1402-1417. |
[19] | SARKAR D, CONTAL E, VAYATIS N, et al. Prediction and optimization of wave energy converter arrays using a machine learning approach[J]. Renewable Energy, 2016, 97: 504-517. |
[20] | 方红伟, 宋如楠, 冯郁竹, 等. 基于差分进化的波浪能转换装置阵列优化[J]. 电工技术学报, 2019, 34(12): 2597-2605. |
FANG Hongwei, SONG Runan, FENG Yuzhu, et al. Array optimization of wave energy converters by differential evolution algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2597-2605. | |
[21] | 马宏达, 邓义斌, 郭强波. 基于遗传算法的二自由度波浪能装置阵列优化[J]. 太阳能学报, 2022, 43(6): 264-269. |
MA Hongda, DENG Yibin, GUO Qiangbo. Optimization of 2-dof wave energy converters array based on genetic algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 264-269. | |
[22] | HASHIM F A, HOUSSEIN E H, HUSSAIN K, et al. Honey badger algorithm: New metaheuristic algorithm for solving optimization problems[J]. Mathematics & Computers in Simulation, 2022, 192: 84-110. |
[23] | HAN E F, GHADIMI N. Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm[J]. Sustainable Energy Technologies & Assessments, 2022, 52: 102005. |
[24] | 董海, 林国栋. 基于改进HBA算法的生鲜闭环供应链网络鲁棒优化设计[J]. 计算机应用研究, 2022, 39(10): 3020-3025. |
DONG Hai, LIN Guodong. Robust optimization design of fresh closed-loop supply chain network based on improved honey badger algorithm[J]. Application Research of Computers, 2022, 39(10): 3020-3025. | |
[25] | NASSEF A M, HOUSSEIN E H, HELMY B E D, et al. Modified honey badger algorithm based global MPPT for triple-junction solar photovoltaic system under partial shading condition and global optimization[J]. Energy, 2022, 254: 124363. |
[26] | BABU T S, RAM J P, DRAGI?EVI? T, et al. Particle swarm optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 74-85. |
[27] | SERGIIENKO N Y, CAZZOLATO B S, DING B, et al. An optimal arrangement of mooring lines for the three-tether submerged point-absorbing wave energy converter[J]. Renewable Energy, 2016, 93: 27-37. |
[28] | WU G X. Radiation and diffraction by a submerged sphere advancing in water waves of finite depth[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical & Engineering Sciences, 1995, 448(1932): 29-54. |
[29] | HEMER M A, GRIFFIN D A. The wave energy resource along Australia’s Southern margin[J]. Journal of Renewable & Sustainable Energy, 2010, 2(4): 043108. |
[30] | 张海南, 游晓明, 刘升. 动态进化与交互学习机制融合的蚁群算法[J]. 信息与控制, 2020, 49(3): 297-305. |
ZHANG Hainan, YOU Xiaoming, LIU Sheng. Ant colony algorithm based on dynamic evolution and interactive learning mechanism[J]. Information & Control, 2020, 49(3): 297-305. |
/
〈 |
|
〉 |