收稿日期: 2023-03-14
修回日期: 2023-05-22
录用日期: 2023-05-29
网络出版日期: 2023-06-13
基金资助
国家自然科学基金(72201171);上海市优秀学术带头人计划(20XD1422100)
Automatic Detection Method for Surface Diseases of Shield Tunnel Based on Deep Learning
Received date: 2023-03-14
Revised date: 2023-05-22
Accepted date: 2023-05-29
Online published: 2023-06-13
为实现高精度像素级地铁盾构隧道表观多病害检测,提出一种基于深度学习的语义分割模型 SU-ResNet++.首先,设计基于残差单元结合注意力机制的编码器 SE-ResNet50 进行预训练,并将其作为 U-Net++ 的主干网络设计新型神经网络模型;其次,通过原始数据采集、数据预处理及人工标注,构建具有 4 500 张图片的盾构隧道表观多病害数据集;最后,将所提出的方法通过数据集进行训练、验证和测试,并应用于实际工程检测,实现了高精度像素级的病害语义分割.实验结果表明,所提出的 SU-ResNet++ 算法适用于盾构隧道病害数据检测,可以自动准确地识别病害类别及形态,病害识别精度相比传统语义分割模型有明显提高,并且满足实际工程需求.
王宝坤 , 王如路 , 陈锦剑 , 潘越 , 王鲁杰 . 基于深度学习的盾构隧道表观病害自动检测方法[J]. 上海交通大学学报, 2024 , 58(11) : 1716 -1723 . DOI: 10.16183/j.cnki.jsjtu.2023.089
In order to achieve high-precision pixel-level detection of multiple surface diseases in metro shield tunnels, a semantic segmentation model SU-ResNet++ based on deep learning is proposed. First, the encoder SE-ResNet50 based on residual unit and attention mechanism is designed and pre-trained, using as the backbone network of U-Net++ to design a new neural network model. Then, through original data collection, data preprocessing, and manual annotation, a shield tunnel surface multiple diseases dataset with 4 500 pictures is constructed. Finally, the proposed method is trained, verified, and tested on a dataset, and applied to practical engineering detection, achieving high-precision pixel-level diseases semantic segmentation. The experimental results indicate that the proposed SU-ResNet++ algorithm is applicable to the detection of shield tunnel disease data, and can automatically and accurately identify the disease category and form. Compared with the traditional semantic segmentation models, its disease identification precision is significantly improved, which meets the practical engineering requirements.
[1] | NI F T, ZHANG J, CHEN Z Q. Pixel level crack delineation in images with convolutional feature fusion[J]. Structural Control and Health Monitoring, 2019, 26(1): e2286.1-e2286.18. |
[2] | YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109. |
[3] | LIANG X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(5): 415-430. |
[4] | LIU Y, YAO J, LU X, et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338 (APR.21): 139-153. |
[5] | 刘凡, 王君锋, 陈峙宇, 等. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. |
LIU Fan, WANG Junfeng, CHEN Zhiyu, et al. Crack detection method based on parallel attention UNet[J]. Computer Research and Development, 2021, 58(8): 1718-1726. | |
[6] | ZHOU Z, ZHANG J, GONG C. Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once network[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(6): 762-780. |
[7] | CHA Y J, CHOI W, SUH G, et al. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 731-747. |
[8] | XUE Y, LI Y. A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(8): 638-654. |
[9] | 饶勇成, 韩晓健, 肖飞, 等. 基于深度学习的混凝土结构多病害检测[J]. 建筑结构, 2021, 51 (Sup.2): 1439-1445. |
RAO Yongcheng, HAN Xiaojian, XIAO Fei, et al. Multiple disease detection of concrete structures based on deep learning[J]. Building Structure, 2021, 51 (Sup.2): 1439-1445. | |
[10] | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham, Switzerland: Springer, 2018: 3-11. |
[11] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778. |
[12] | HU J, SHEN L, SUN G, et al. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. |
[13] | YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks[C] //Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: NIPS, 2014: 3320-3328. |
[14] | DENG J, DONG W, RICHARD S, et al. ImageNet:A largescale hierarchical image database[C] //Proceedings of the IEEE Computer Vision and Pattern Recognition. Miami, USA:IEEE,2009:248-255. |
[15] | ZHU Q, ZHENG H, WANG Y, et al. Study on the evaluation method of sound phase cloud maps based on an improved YOLOv4 algorithm[J]. Sensors, 2020, 20(15): 43141-18. |
[16] | RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[DB/OL]. (2015-05-18)[2023-03-14]. http://arxiv.org/abs/1505.04597. |
[17] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[DB/OL]. (2015-04-10)[2023-03-14]. http://arxiv.org/abs/1409.1556. |
[18] | KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
/
〈 |
|
〉 |