收稿日期: 2023-02-13
修回日期: 2023-04-28
录用日期: 2023-05-19
网络出版日期: 2023-05-29
基金资助
吉林省科技厅重点研发项目资助(20220203052SF);吉林省科技厅国际科技合作项目(20210402080GH)
Multi-Objective Optimization Strategy for Wind-Photovoltaic-Pumped Storage Combined System Based on Gray Wolf Algorithm
Received date: 2023-02-13
Revised date: 2023-04-28
Accepted date: 2023-05-19
Online published: 2023-05-29
风电、光伏的出力具有随机性、波动性以及间歇性,直接并网将会造成电站发电收益降低和电能并网波动性较大以及风、光弃电量较多等问题,降低碳减排量.抽水蓄能电站的加入可在一定程度上缓解上述问题.因此,针对风-光-抽水蓄能联合发电应用场景进行研究,建立综合考虑联合系统经济收益最大化、系统功率波动最小化以及碳减排量最大化3个目标的多目标优化模型,并通过归一化处理,将多目标问题转换成单一目标问题进行求解.采用能够实现局部搜索与全局搜索自适应调整的灰狼算法,对风电、光伏以及抽水蓄能的并网电量进行优化仿真.仿真结果表明:所建立的模型能够有效提高系统的经济收益,大大降低电能并网波动性.同时,新能源的高效利用也使得联合系统的碳减排能力显著提高,模型具备较高的可行性.
张良 , 郑丽冬 , 冷祥彪 , 吕玲 , 蔡国伟 . 基于灰狼算法的风-光-抽水蓄能联合系统多目标优化策略[J]. 上海交通大学学报, 2024 , 58(10) : 1554 -1566 . DOI: 10.16183/j.cnki.jsjtu.2023.049
The output of wind power and photovoltaic has the characteristics of randomness, volatility, and intermittency. Direct grid connection will lead to a lower power generation income of the power station, a greater volatility of grid connection of electric energy, and more wind and photovoltaic power discards, resulting in lower carbon emission reductions. The addition of pumped storage power plants effectively reduces the above impacts. Therefore, this paper studies the application scenario of wind photovoltaic and pumped storage combined power generation, establishes a multi-objective optimization model that comprehensively considers the three objectives of maximizing the economic benefits of the combined system, minimizing the system power fluctuation, and maximizing carbon emission reduction, and converts the multi-objective problem into a single objective problem for solution by normalization. In this paper, the gray wolf algorithm, which can realize the adaptive adjustment of local search and global search, is used to simulate and optimize the grid connected power of wind power, photovoltaic, and pumped storage. The optimization results show that the established model can effectively improve the economic benefits of the system and greatly reduce the fluctuation of power grid connection. In addition, the efficient use of new energy also greatly improves the carbon emission reduction capacity of the joint system, which proves that the model has high feasibility.
[1] | 樊肖杰, 迟永宁, 马士聪, 等. 大规模海上风电接入电网关键技术与技术标准的研究及应用[J]. 电网技术, 2022, 46(8): 2859-2870. |
FAN Xiaojie, CHI Yongning, MA Shicong, et al. Research and application of key technologies and technical standards for large-scale offshore wind farms connecting to power grid[J]. Power System Technology, 2022, 46(8): 2859-2870. | |
[2] | DíAZ-GONáLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. A review of energy storage technologies for wind power applications[J]. Renewable & Sustainable Energy Reviews, 2012, 16(4): 2154-2171. |
[3] | LIU Y, HAO L C, XING Z X, et al. Multi-objective coordinated optimization of power system with wind power accommodation[J]. Energy Reports, 2022, 8: 188-195. |
[4] | 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127-135. |
CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-135. | |
[5] | JAVED M S, MA T, JURASZ J, et al. Solar and wind power generation systems with pumped hydro storage: Review and future perspectives[J]. Renewable Energy, 2020, 148: 176-192. |
[6] | 周正威, 郝亚群, 张雪映. 基于需求响应的风电-抽水蓄能系统调度模型[J]. 电子科技, 2019, 32(4): 77-80. |
ZHOU Zhengwei, HAO Yaqun, ZHANG Xueying. A dispatch model for wind power and pumped-storage system based on demand response[J]. Electronic Science & Technology, 2019, 32(4): 77-80. | |
[7] | 盛四清, 孙晓霞. 风电-抽水蓄能联合运行优化模型[J]. 电力系统及其自动化学报, 2016, 28(11): 100-103. |
SHENG Siqing, SUN Xiaoxia. Operational optimization model for combined operation of wind power and pumped-storage plant[J]. Proceedings of the CSU-EPSA, 2016, 28(11): 100-103. | |
[8] | 王博, 詹红霞, 张勇, 等. 考虑风电不确定性的风蓄火联合优化经济调度研究[J]. 电力工程技术, 2022, 41(1): 93-100. |
WANG Bo, ZHAN Hongxia, ZHANG Yong, et al. Combined optimal economic dispatch of wind-storage-fire considering wind power uncertainty[J]. Electric Power Engineering Technology, 2022, 41(1): 93-100. | |
[9] | 高洁. 抽水蓄能—光伏—风电联合优化运行研究[J]. 水电与抽水蓄能, 2020, 6(5): 25-29. |
GAO Jie. A research on operation of the pumped-storage, photovoltaic and wind power hybrid system[J]. Hydropower & Pumped Storage, 2020, 6(5): 25-29. | |
[10] | ZHANG S S, YANG W J, LI X D, et al. Economic evaluation of wind-PV-pumped storage hybrid system considering carbon emissions[J]. Energy Reports, 2022, 8: 1249-1258. |
[11] | 马实一, 李建成, 段聪, 等. 基于电力市场背景的风-光-抽水蓄能联合优化运行[J]. 智慧电力, 2019, 47(8): 43-49. |
MA Shiyi, LI Jiancheng, DUAN Cong, et al. Joint operation optimization of wind-photovoltaic-pumped hydro storage based on electricity market[J]. Smart Power, 2019, 47 (8): 43-49. | |
[12] | ZHANG L, GUO H L, DA C Z, et al. Optimization scheduling model and method for wind-PV-pumped joint operation in high proportion renewable energy base[J]. IOP Conference Series: Earth & Environmental Science, 2020, 512(1): 012017. |
[13] | 王红亮, 佘金鑫. 联合互补发电系统优化策略研究[J]. 东北电力技术, 2021, 42(8): 20-24. |
WANG Hongliang, SHE Jinxin. Research on optimization strategy of joint complementary generation system[J]. Northeast Electric Power Technology, 2021, 42(8): 20-24. | |
[14] | 沈琛云, 王明俭, 李晓明. 基于风-光-蓄-火联合发电系统的多目标优化调度[J]. 电网与清洁能源, 2019, 35(11): 74-82. |
SHEN Chenyun, WANG Mingjian, LI Xiaoming. Multi-objective optimal dispatch based on wind-solar-pumped storage thermal combined power system[J]. Power System & Clean Energy, 2019, 35(11): 74-82. | |
[15] | 刘天, 蒋成成, 魏云冰. 风-光-抽水蓄能联合发电系统模型的优化研究[J]. 电工技术, 2021(18): 63-65. |
LIU Tian, JIANG Chengcheng, WEI Yunbing. Study on optimization of wind-light-pumped storage combined power generation system model[J]. Electric Engineering, 2021(18): 63-65. | |
[16] | 周脉玉, 邵春峰, 隋秀春. “新能源+抽蓄”模式下抽水蓄能电站的价格形成机制研究[J]. 中国市场, 2018(6): 125-127. |
ZHOU Maiyu, SHAO Chunfeng, SUI Xiuchun. Study on price formation mechanism of pumped storage power station under the mode of “new energy+pumping storage”[J]. China Market, 2018 (6): 125-127. | |
[17] | 李树林, 戴嘉彤, 董海鹰, 等. 考虑相关性的风光抽蓄互补发电系统优化运行[J]. 电力系统及其自动化学报, 2019, 31(11): 92-102. |
LI Shulin, DAI Jiatong, DONG Haiying, et al. Optimal operation of wind-photovoltaic-pumped storage joint power generation system considering correlations[J]. Proceedings of the CSU-EPSA, 2019, 31 (11): 92-102. | |
[18] | HUANG H Y, ZHOU M, ZHANG L J, et al. Joint generation and reserve scheduling of wind-solar-pumped storage power systems under multiple uncertainties[J]. International Transactions on Electrical Energy Systems, 2019, 29(7): e12003. |
[19] | LI Y, LI O T, WU F, et al. Coordinated multi-objective capacity optimization of wind-photovoltaic-pumped storage hybrid system[J]. Energy Reports, 2022, 8: 1303-1310. |
[20] | ZHAO G, WAN C X, ZUO W Q, et al. Research on multiobjective optimal operation strategy for wind-photovoltaic-hydro complementary power system[J]. International Journal of Photoenergy, 2022, 2022: 1-23. |
[21] | LI X M, YU X P, GAO Z. Research on the optimal strategy of pumped storage power station to provide multiple time-scale reserves[J]. Journal of Physics: Conference Series, 2021, 2108(1): 012052. |
[22] | 刘忠, 陈星宇, 邹淑云, 等. 计及碳排放的风-光-抽水蓄能系统容量优化配置方法[J]. 电力系统自动化, 2021, 45(22): 9-18. |
LIU Zhong, CHEN Xingyu, ZOU Shuyun, et al. Optimal capacity configuration method for wind-photovoltaic-pumped-storage system considering carbon emission[J]. Automation of Electric Power Systems, 2021, 45(22): 9-18. | |
[23] | 朱晔, 兰贞波, 隗震, 等. 考虑碳排放成本的风光储多能互补系统优化运行研究[J]. 电力系统保护与控制, 2019, 47(10): 127-133. |
ZHU Ye, LAN Zhenbo, WEI Zhen, et al. Research on optimal operation of wind-PV-ES complementary system considering carbon emission cost[J]. Power System Protection & Control, 2019, 47 (10): 127-133. | |
[24] | 张立辉, 戴谷禹, 聂青云, 等. 碳交易机制下计及用电行为的虚拟电厂经济调度模型[J]. 电力系统保护与控制, 2020, 48(24): 154-163. |
ZHANG Lihui, DAI Guyu, NIE Qingyun, et al. Economic dispatch model of virtual power plant considering electricity consumption under the carbon trading mechanism[J]. Power System Protection & Control, 2020, 48 (24): 154-163. | |
[25] | 胡泽春, 丁华杰, 孔涛. 风电—抽水蓄能联合日运行优化调度模型[J]. 电力系统自动化, 2012, 36(2): 36-41. |
HU Zechun, DING Huajie, KONG Tao. A joint daily operational optimization model for wind power and pumped-storage plant[J]. Automation of Electric Power Systems, 2012, 36 (2): 36-41. | |
[26] | 张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3): 30-38. |
ZHANG Xiaofeng, WANG Xiuying. Comprehensive review of grey wolf optimization algorithm[J]. Computer Science, 2019, 46 (3): 30-38. | |
[27] | 李星, 杨秀媛, 王丽婕. 灰狼算法在风电水电协同运行中的应用[J]. 发电技术, 2018, 39(1): 43-48. |
LI Xing, YANG Xiuyuan, WANG Lijie. Grey wolf algorithm in coordinated hydro and wind power generation[J]. Power Generation Technology, 2018, 39(1): 43-48. |
/
〈 |
|
〉 |