船舶海洋与建筑工程

舰船管路布置PG-MACO优化方法

展开
  • 大连理工大学 a. 船舶工程学院;b. 工业装备结构分析国家重点实验室,辽宁 大连 116024
林 焰(1963-),教授,博士生导师,从事船舶与海洋结构物数字化设计方法与软件开发研究.
金庭宇,硕士生;E-mail:22003161@mail.dlut.edu.cn.

收稿日期: 2022-12-09

  修回日期: 2023-02-26

  录用日期: 2023-04-06

  网络出版日期: 2023-04-14

基金资助

国家重点实验室专项基金(S18315);中核绿色建造技术与装备重点实验室开放基金项目(CNNC-STGCL-KFKT-2022-001)

PG-MACO Optimization Method for Ship Pipeline Layout

Expand
  • School of Naval Architecture and Ocean Engineering; b. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, Liaoning, China

Received date: 2022-12-09

  Revised date: 2023-02-26

  Accepted date: 2023-04-06

  Online published: 2023-04-14

摘要

针对舰船管路设计效率低下的问题提出一种管路布置优化方法.综合考虑安全性、经济性、协调性和可操作性等工程背景建立优化数学模型,改进蚁群算法在处理混合管路布置工况下的缺陷,提出优化可行解搜索的空间状态转移策略,提升信息素启发效果并加速算法收敛的信息素扩散机制,面向混合管路布置工况设计多蚁群协同进化机制.基于二次开发技术实现本方法在第三方设计软件上的应用,采用核级一回路管道布置工程案例进行验证.结果表明信息素高斯扩散多蚁群优化(PG-MACO)算法的性能和布置效果优于传统蚁群算法,寻路效率提升58.38%,收敛代数缩短43.24%,布置结果中管路长度缩短33.88%,管路折弯次数减少41.67%,验证了本方法的有效性和工程实用性.

本文引用格式

林焰, 金庭宇, 杨宇超 . 舰船管路布置PG-MACO优化方法[J]. 上海交通大学学报, 2024 , 58(7) : 1027 -1035 . DOI: 10.16183/j.cnki.jsjtu.2022.508

Abstract

Aimed at the problem of low efficiency of ship pipeline design, an optimization method of pipeline layout is proposed. An optimization mathematical model is established by comprehensively considering the engineering background of safety, economy, coordination and operability, and the defects of ant colony optimization algorithm in dealing with mixed pipeline layout conditions are improved. A spatial state transition strategy for optimizing feasible solution search, a pheromone diffusion mechanism for improving pheromone inspiration effect and accelerating algorithm convergence are proposed, and a multi-ant colony co-evolution mechanism is designed for mixed pipeline layout conditions. Based on the secondary development technology, the application of this method in the third-party design software is realized, and verified by a nuclear primary pipeline layout project. The results show that the pheromone Gaussian diffusion multi ant colony optimization (PG-MACO) algorithm has a better performance and layout effect than the traditional ant colony algorithm. The routing efficiency is improved by 58.38%, the convergence algebra is shortened by 43.24%, the pipeline length is shortened by 33.88%, and the number of pipeline bends is reduced by 41.67%, which verifies the effectiveness and engineering practicability of the proposed method.

参考文献

[1] DONG Z R, BIAN X Y, ZHAO S. Ship pipe route design using improved multi-objective ant colony optimization[J]. Ocean Engineering, 2022, 258: 1-14.
[2] WANG Y L, YU Y Y, LI K, et al. A human-computer cooperation improved ant colony optimization for ship pipe route design[J]. Ocean Engineering, 2018, 150: 12-20.
[3] JIANG W Y, LIN Y, CHEN M, et al. A co-evolutionary improved multi-ant colony optimization for ship multiple and branch pipe route design[J]. Ocean Engineering, 2015, 102: 63-70.
[4] 陈杨. 基于改进蚁群算法和SolidWorks二次开发的船舶管路规划研究[D]. 镇江: 江苏科技大学, 2019.
  CHEN Yang. Research on ship pipeline planning based on improved ant colony algorithm and secondary development of SolidWorks[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
[5] 范小宁, 林焰, 纪卓尚. 多蚁群协进化的船舶多管路并行布局优化[J]. 上海交通大学学报, 2009, 43(2): 193-197.
  FAN Xiaoning, LIN Yan, JI Zhuoshang. Multi ant colony cooperative coevolution for optimization of ship multi pipe parallel routing[J]. Journal of Shanghai Jiao Tong University, 2009, 43(2): 193-197.
[6] 范小宁, 林焰, 纪卓尚. 船舶管路三维布局优化的变长度编码遗传算法[J]. 中国造船, 2007(1): 82-90.
  FAN Xiaoning, LIN Yan, JI Zhuoshang. A variable length coding genetic algorithm to ship pipe path routing optimization in 3D space[J]. Shipbuilding of China, 2007(1): 82-90.
[7] 董宗然, 楼偶俊, 管官. 基于改进遗传算法的船舶管路布局设计[J]. 计算机工程与应用, 2020, 56(19): 252-260.
  DONG Zongran, LOU Oujun, GUAN Guan. Ship pipe route design based on improved genetic algorithm[J]. Computer Engineering and Applications, 2020, 56(19): 252-260.
[8] 王运龙, 王晨, 韩洋, 等. 船舶管路智能布局优化设计[J]. 上海交通大学学报, 2015, 49(4): 513-518.
  WANG Yunlong, WANG Chen, HAN Yang, et al. Intelligent layout optimization design of ship pipe[J]. Journal of Shanghai Jiao Tong University, 2015, 49(4): 513-518.
[9] DONG Z R, LIN Y. A particle swarm optimization based approach for ship pipe route design[J]. International Shipbuilding Progress, 2017, 63(1-2): 59-84.
[10] LIN Y, BIAN X Y, DONG Z R. A discrete hybrid algorithm based on Differential Evolution and Cuckoo Search for optimizing the layout of ship pipe route[J]. Ocean Engineering, 2022, 261: 1-13.
[11] BIAN X, LIN Y, DONG Z. Auto-routing methods for complex ship pipe route design[J]. Journal of Ship Production and Design, 2022, 38(2): 100-114.
[12] 董宗然, 林焰. 基于协同进化和并行计算的船舶管路布置方法[J]. 大连理工大学学报, 2016, 56(4): 367-374.
  DONG Zongran, LIN Yan. Method of ship pipe routing based on co-evolution and parallel computing[J]. Journal of Dalian University of Technology, 2016, 56(4): 367-374.
[13] 邢佳鹏. 基于改进A-star算法的船舶三维管路布局优化设计[D]. 大连: 大连理工大学, 2021.
  XING Jiapeng. Optimal design of ship three-dimensional pipeline layout based on improved A-star algorithm[D]. Dalian: Dalian University of Technology, 2021.
[14] 熊勇, 张加, 余嘉俊, 等. 船舶三维管路智能布局优化算法[J]. 计算机应用, 2020, 40(7): 2164-2170.
  XIONG Yong, ZHANG Jia, YU Jiajun, et al. Intelligent layout optimization algorithm for 3D pipelines of ships[J]. Journal of Computer Applications, 2020, 40(7): 2164-2170.
[15] DONG Z, BIAN X. Ship pipe route design using improved A* algorithm and genetic algorithm[J]. IEEE Access, 2020, 8: 153273-153296.
[16] 董宗然, 王法胜, 楼偶俊, 等. 基于改进NSGA-II 的船舶管路路径设计[J]. 计算机集成制造系统, 2022, 28(4): 1129-1142.
  DONG Zongran, WANG Fasheng, LOU Oujun, et al. Ship pipe route design based on improved NSGA-II[J]. Computer Integrated Manufacturing Systems, 2022, 28(4): 1129-1142.
[17] WANG Y, WEI H, ZHANG X, et al. Optimal design of ship branch pipe route by a cooperative co-evolutionary improved particle swarm genetic algorithm[J]. Marine Technology Society Journal, 2021, 55(5): 116-128.
[18] 徐浩天, 季伟东, 孙小晴, 等. 基于正态分布衰减惯性权重的粒子群优化算法[J]. 深圳大学学报(理工版), 2020, 37(2): 208-213.
  XU Haotian, JI Weidong, SUN Xiaoqing, et al. A PSO algorithm with inertia weight decay by normal distribution[J]. Journal of Shenzhen University (Science & Engineering), 2020, 37(2): 208-213.
[19] 邹玉堂, 任光, 路慧彪. 船舶管路布置仿真模型简化[J]. 上海海事大学学报, 2010, 31(1): 72-76.
  ZHOU Yutang, REN Guang, LU Huibiao. Simulation model simplification for pipe route design of ship[J]. Journal of Shanghai Maritime University, 2010, 31(1): 72-76.
[20] 林焰, 金庭宇. 一种基于PG-MACO算法的舰船管路布置设计: CN 202211218580.2[P].2022-12-16[2022-12-09].
  LIN Yan, JIN Tingyu. A ship pipeline layout design based on PG-MACO algorithm: CN 202211218580.2[P]. 2022-12-16[2022-12-09].
[21] 罗朝阳. 基于CATIA游艇机舱可视化设计[D]. 武汉: 武汉理工大学, 2013.
  LUO Chaoyang. The yacht cabin visual design based on CATIA[D]. Wuhan: Wuhan University of Technology, 2013.
[22] 大连理工大学. 舰船管道自动布置设计PD-MACO算法软件[M]. 辽宁: 中华人民共和国国家版权局, 2022.
  Dalian University of Technology. PD-MACO algorithm software for automatic layout design of ship pipelines[M]. Liaoning: People’s Republic of China (PRC) National Copyright Administration, 2022.
文章导航

/