基于RBF-BLS面向电动汽车低碳安全出行的SOH估计方法
收稿日期: 2023-02-15
修回日期: 2023-02-15
录用日期: 2023-02-24
网络出版日期: 2023-04-06
基金资助
国家自然科学基金(61803136)
SOH Estimation Method Based on RBF-BLS for Low-Carbon and Safe Travel of Electric Vehicle
Received date: 2023-02-15
Revised date: 2023-02-15
Accepted date: 2023-02-24
Online published: 2023-04-06
电动汽车充电过程的安全性与动力电池组的健康状态(SOH)紧密相关,因此SOH的高性能实时估计是充电过程中安全检测的重要基础.由于动力电池组的SOH受复杂结构、电芯类型、驾驶习惯、环境温度和充电行为等因素的深度影响,现有基于单个或少量特定电池电芯实验数据的方法研究在面对整车动力电池组实时SOH估计时遭遇模型复杂、数据缺失、实时性差、精度不足等难题.针对建模困难、实时性和精度不足等问题,应用多方法集成融合思想,在电池经验退化模型上引入径向基函数(RBF)优化的宽度学习(BLS)神经网络,提出一种高性能的动力电池组SOH估计方法.首先,该方法采用经验退化模型和离线历史充电数据得到初步的SOH值;其次,应用RBF神经网络给出一种BLS系统中初始权重矩阵的确定方法,建立经验退化与径向基函数优化的宽度学习神经网络(RBF-BLS);再次,采用RBF-BLS神经网络和实时充电数据训练得到估计误差,并对经验退化模型得到的SOH进行补偿,从而得到更高精度的SOH估计值;最后,采用基于充电运营企业实际充电数据的计算机仿真实例来验证新方法的有效性和优越性.
李春喜 , 乔涵哲 , 姚刚 , 姜淏予 , 崔向科 , 葛泉波 . 基于RBF-BLS面向电动汽车低碳安全出行的SOH估计方法[J]. 上海交通大学学报, 2024 , 58(9) : 1454 -1464 . DOI: 10.16183/j.cnki.jsjtu.2023.051
The charging safety of electric vehicle (EV) is closely related to the state of health (SOH) in power battery pack. Therefore, the high-performance and real-time estimation of SOH is an important basis for safety detection in the charging process. Power battery is deeply effected by factors such as complex structure, types of battery cell, driving habits, temperature, and charging behavior. Compared to SOH estimation methods based on experimental data from one or few battery cells, research on real-time SOH estimation of the power battery meets with insufficient problems in battery model, data getting, real-time, accuracy, and so on. Aimed at these drawbacks, a high performance SOH estimation method in power battery pack is proposed by introducing the broad learning system(BLS) optimized by radial basis function (RBF) into the empirical battery degradation model based on the idea of multi-method integration and fusion. First, the empirical degradation model and offline historical charging data are used to obtain the initial SOH value. Then, a radial basis function neural network is applied to get the initial weight matrix of the BLS to optimize the BLS method, and establish the RBF-BLS neural network. The estimation error can be trained by the RBF-BLS neural network and real-time charging data, and compensate for the initial SOH to gain a higher precise SOH value. Finally, a computer simulation example based on actual charging data from a charging operation enterprises is used to verify the effectiveness and superiority of the proposed method.
[1] | XU Z Q. Research on energy conservation and emission reduction effect and development path of new energy electric vehicle[C]//2019 3rd International Conference on Data Science and Business Analytics. Istanbul, Turkey: IEEE, 2019: 448-450. |
[2] | 李佳琪, 徐潇源, 严正. 大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述[J]. 上海交通大学学报, 2022, 56(3): 253-266. |
LI Jiaqi, XU Xiaoyuan, YAN Zheng. A Review of coupled electricity and hydrogen energy system with transportation system under the background of large-scale new energy vehicles access[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 253-266. | |
[3] | 黄强, 郭怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509. |
HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509. | |
[4] | 朱松琳. 新能源汽车进入发展新阶段[J]. 决策探索(上), 2021(1): 14-18. |
ZHU Songlin. New energy vehicles enter a new stage of development[J]. Policy Research & Exploration, 2021(1): 14-18. | |
[5] | 梁晓静. 锂离子电池健康状态的估计方法分析[J]. 化工管理, 2020(31): 67-68. |
LIANG Xiaojing. A review of lithium-ion battery state of health estimation methods[J]. Chemical Enterprise Management, 2020(31): 67-68. | |
[6] | 刘镕旗, 庞博聪, 李艳香. 新能源汽车及充电设施发展战略研究[J]. 中国市场, 2020(36): 54-55. |
LIU Rongqi, PANG Bocong, LI Yanxiang. Research on development strategy of new energy vehicles and charging facilities[J]. China Market, 2020(36): 54-55. | |
[7] | 阮艺亮. 我国新能源汽车起火事故分析与对策[J]. 汽车工业研究, 2019(3): 31-35. |
RUAN Yiliang. Analysis and countermeasures of fire accidents of new energy vehicles in China[J]. Auto Industry Research, 2019(3): 31-35. | |
[8] | WANG Q, TIAN H, YANG X F, et al. Research on new energy vehicle safety assessment based on AHP[C]//2019 4th International Conference on Mechanical, Control and Computer Engineering. Hohhot, China: IEEE, 2019: 1021-1024. |
[9] | WANG X, HUANG D G, WANG Y, et al. Battery management system based on AURIX multi-core architecture[C]//2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference. Detroit Michigan, USA: IEEE, 2019: 1790-1794. |
[10] | 陆凡, 刘东. 储能应用中的BMS系统设计[J]. 电工技术, 2020(22): 71-74. |
LU Fan, LIU Dong. Design of BMS system in energy storage application[J]. Electric Engineering, 2020(22): 71-74. | |
[11] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车非车载传导式充电机与电池管理系统之间的通信协议: GB/T 27930—2015[S]. 北京: 中国标准出版社, 2016. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Communication protocols between off-board conductive charger and battery management system for electric vehicle: GB/T 27930—2015[S]. Beijing: Standards Press of China, 2016. | |
[12] | 刘大同, 宋宇晨, 武巍, 等. 锂离子电池组健康状态估计综述[J]. 仪器仪表学报, 2020, 41(11): 1-18. |
LIU Datong, SONG Yuchen, WU Wei, et al. Review of state of health estimation for lithium-ion battery pack[J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 1-18. | |
[13] | WU Y, JOSSEN A. Entropy-induced temperature variation as a new indicator for state of health estimation of lithium-ion cells[J]. Electrochimica Acta, 2018, 276: 370-376. |
[14] | LIU D T, WANG H, PENG Y, et al. Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction[J]. Energies, 2013, 6(8): 3654-3668. |
[15] | KHALEGHI S, FIROUZ Y, VAN MIERLO J, et al. Developing a real-time data-driven battery health diagnosis method, using time and frequency domain condition indicators[J]. Applied Energy, 2019, 255: 113813. |
[16] | SUN Y Q, HAO X L, PECHT M, et al. Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator[J]. Microelectronics Reliability, 2018, 88/89/90: 1189-1194. |
[17] | LIU D T, SONG Y C, LI L, et al. On-line life cycle health assessment for lithium-ion battery in electric vehicles[J]. Journal of Cleaner Production, 2018, 199: 1050-1065. |
[18] | CHEN L, WANG H M, LIU B H, et al. Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation[J]. Energy, 2021, 215: 119078. |
[19] | 徐宏东, 高海波, 徐晓滨, 等. 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022, 56(4): 413-421. |
XU Hongdong, GAO Haibo, XU Xiaobin, et al. State of health estimation of Lithium-ion battery using a CS-SVR model based on evidence reasoning rule[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421. | |
[20] | YANG Q X, XU J, LI X Q, et al. State-of-health estimation of lithium-ion battery based on fractional impedance model and interval capacity[J]. International Journal of Electrical Power & Energy Systems, 2020, 119: 105883. |
[21] | 曾文文. 锂离子电池健康状态评估及剩余寿命预测方法[D]. 安徽: 安徽理工大学, 2019. |
ZENG Wenwen. State-of-health estimation and remaining useful life prediction method of lithium-ion battery[D]. Anhui: Anhui University of Science and Technology, 2019. | |
[22] | 熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018. |
XIONG Rui. Core algorithm for power battery management system[M]. Beijing: China Machine Press, 2018. | |
[23] | BERECIBAR M, GANDIAGA I, VILLARREAL I, et al. Critical review of state of health estimation methods of Li-ion batteries for real applications[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 572-587. |
[24] | 刘健, 陈自强, 黄德扬, 等. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9): 1058-1065. |
LIU Jian, CHEN Ziqiang, HUANG Deyang, et al. Remaining useful life prediction for lithium-ion batteries based on time interval of equal charging voltage difference[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9): 1058-1065. | |
[25] | LI C X, FU Y Y, ZHANG J M, et al. Evaluation methods on charging safety for EV power battery[C]//2020 35th Youth Academic Annual Conference of Chinese Association of Automation. Zhanjiang, China: IEEE, 2020: 318-323. |
[26] | 梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. |
LIANG Xincheng, ZHANG Mian, HUANG Guojun. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. | |
[27] | 何忠霖, 彭忆强, 丁宗恒. 纯电动汽车锂离子电池管理系统关键技术现状分析[J]. 汽车零部件, 2019(1): 71-76. |
HE Zhonglin, PENG Yiqiang, DING Zongheng. Analysis of key technology current status of Li-ion battery management system for pure electric vehicle[J]. Automobile Parts, 2019(1): 71-76. | |
[28] | TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: 120813. |
[29] | PHILIP CHEN C L, LIU Z L. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24. |
[30] | PHILIP CHEN C L, LIU Z L, FENG S. Universal approximation capability of broad learning system and its structural variations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1191-1204. |
[31] | 周楠, 徐潇源, 严正, 等. 基于宽度学习系统的光伏发电功率超短期预测[J]. 电力系统自动化, 2021, 45(1): 55-64. |
ZHOU Nan, XU Xiaoyuan, YAN Zheng, et al. Ultra-short-term forecasting of photovoltaic power generation based on broad learning system[J]. Automation of Electric Power Systems, 2021, 45(1): 55-64. | |
[32] | 卫敏, 余乐安. 具有最优学习率的RBF神经网络及其应用[J]. 管理科学学报, 2012, 15(4): 50-57. |
WEI Min, YU Lean. A RBF neural network with optimum learning rates and its application[J]. Journal of Management Sciences in China, 2012, 15(4): 50-57. | |
[33] | 杨煜普, 马勇, 许晓鸣. 混合算法实现的RBF神经网络及在模式辨识中应用[J]. 上海交通大学学报, 2000, 34(12): 1664-1666. |
YANG Yupu, MA Yong, XU Xiaoming. Hybrid algorithm-based RBF neural network and its application on mode identification[J]. Journal of Shanghai Jiao Tong University, 2000, 34(12): 1664-1666. | |
[34] | 张远翔. 聚类分析中的最佳聚类数确定方法研究[D]. 合肥: 安徽大学, 2020. |
ZHANG Yuanxiang. Research on determining optimal number of clusters in cluster analysis[D]. Hefei: Anhui University, 2020. | |
[35] | 李元, 吴杰, 王国柱. k近邻补值方法在工业过程故障诊断中的应用[J]. 上海交通大学学报, 2015, 49(6): 830-836. |
LI Yuan, WU Jie, WANG Guozhu. k-nearest neighbor imputation method and its application in fault diagnosis of industrial process[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6): 830-836. | |
[36] | 孙瑶洁, 熊智, 李文龙, 等. 基于RBF神经网络的相对导航信息融合方法[J]. 航空计算技术, 2019, 49(6): 27-32. |
SUN Yaojie, XIONG Zhi, LI Wenlong, et al. Relative navigation information fusion method based on RBF neural network[J]. Aeronautical Computing Technique, 2019, 49(6): 27-32. |
/
〈 |
|
〉 |