材料科学与工程

可变闭合力对DP1180钢冲压成形的回弹控制研究

展开
  • 上海大学 材料科学与工程学院, 上海 200444
丁悦婕(1996-),硕士生,主要研究方向为金属板材冲压成形.

收稿日期: 2021-11-02

  修回日期: 2022-01-07

  录用日期: 2022-01-11

  网络出版日期: 2023-03-28

基金资助

国家自然科学基金(52105381)

Springback Control of DP1180 Steel Stamping by Variable Closing Pressure

Expand
  • School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

Received date: 2021-11-02

  Revised date: 2022-01-07

  Accepted date: 2022-01-11

  Online published: 2023-03-28

摘要

为了进一步控制先进高强钢在冲压成形中的回弹问题,提出了一种无需增大材料成形裕度、通过伺服液压设备增大可变闭合力降低回弹的方法.对冲压成形的1 180 MPa双相钢U形基准零件,利用有限元分析增大可变闭合力控制回弹的可行性,并进行试验验证,从残余应力和位错角度研究增大可变闭合力减小回弹的机理.结果表明:该方法使成形后的材料表面残余应力减小,位错密度降低,从而使非弹性回复增加,达到减小目标零件22.3%的回弹角度效果.由于该方法仅在零件成形瞬间施加,不影响材料成形过程中的塑性流动,所以无需增加额外的材料成形能力和整形工序,改变生产节拍即可应用于实际工业,具有广阔应用前景.

本文引用格式

丁悦婕, 王一文, 王武荣, 韦习成, 赵杨洋 . 可变闭合力对DP1180钢冲压成形的回弹控制研究[J]. 上海交通大学学报, 2023 , 57(8) : 1096 -1104 . DOI: 10.16183/j.cnki.jsjtu.2021.439

Abstract

In order to further control the springback of advanced high-strength steel in stamping,a method to reduce the bending springback by increasing the variable closing pressure (VCP) through servo hydraulic equipment without increasing the material forming margin was proposed. For U-shaped benchmark parts of 1 180 MPa dual-phase (DP1180) steel formed by stamping, the feasibility of increasing VCP to control springback was analyzed by using the finite element method, and the mechanism of increasing VCP to reduce springback was studied from the perspective of residual stress and dislocation. The results show that the proposed method can reduce the residual stress and the dislocation density of the formed material, thus increasing the inelastic recovery and achieving the effect of reducing the springback angle of the target part by 22.3%. Because this method is only applied at the end of part forming, which does not affect the plastic flow in the material forming process, there is no need to increase the additional material forming ability and shaping process, which can be applied to actual industry without changing the production rhythm, and has a broad application prospect.

参考文献

[1] LI Q, ZHANG H M, CHEN F, et al. Study on the plastic anisotropy of advanced high strength steel sheet: Experiments and microstructure-based crystal plasticity modeling[J]. International Journal of Mechanical Sciences, 2020, 176: 105569.
[2] 高凯翔, 王武荣, 韦习成, 等. 22MnB5硼钢裸板热成形中的高温摩擦[J]. 上海交通大学学报, 2019, 53(9): 1136-1142.
[2] GAO Kaixiang, WANG Wurong, WEI Xicheng, et al. High-temperature friction of uncoated 22MnB5 boron steel in hot stamping[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9): 1136-1142.
[3] 戴建新, 王爱国. 大型U型薄板冲压件回弹研究[J]. 机械设计, 2019, 36 (Sup.1): 73-76.
[3] DAI Jianxin, WANG Aiguo. Study on springback of large U-sheet stamping parts[J]. Journal of Machine Design, 2019, 36 (Sup.1): 73-76.
[4] SUN Z Y, LANG L H. Study on hydroforming process and springback control of large sheet with weak rigidity[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(6): 903-912.
[5] 安治国, 李正芳, 冯甜华. 汽车加油口盖组合成形工艺[J]. 上海交通大学学报, 2016, 50(7): 1036-1040.
[5] AN Zhiguo, LI Zhengfang, FENG Tianhua. Combined forming process of automotive refill opening cap[J]. Journal of Shanghai Jiao Tong University, 2016, 50(7): 1036-1040.
[6] 宋修成, 陆彬, 陈军. 基于预拉伸与数控渐进成形复合的轿车翼子板样件制造技术[J]. 上海交通大学学报, 2013, 47(5): 754-759.
[6] SONG Xiucheng, LU Bin, CHEN Jun. Investigation on automotive fender fabrication combining stretch forming and incremental forming[J]. Journal of Shanghai Jiao Tong University, 2013, 47(5): 754-759.
[7] SONG J, JANG I, GWAK S, et al. Effect of pulsed currents on the springback reduction of ultra-high strength steels[J]. Procedia Engineering, 2017, 207: 359-364.
[8] 晏佳伟, 胡启, 王振振, 等. 不同硬化模型对第3代超高强度钢板冲压回弹预测的比较[J]. 上海交通大学学报, 2017, 51(11): 1334-1339.
[8] YAN Jiawei, HU Qi, WANG Zhenzhen, et al. A comparison study of different hardening models in springback prediction for stamping of the third generation ultra high strength steel[J]. Journal of Shanghai Jiao Tong University, 2017, 51(11): 1334-1339.
[9] PORNPUTSIRI N, KANLAYASIRI K. Effect of bending temperatures on the microstructure and springback of a TRIP steel sheet[J]. Defence Technology, 2020, 16(5): 980-987.
[10] GIL I, MENDIGUREN J, GALDOS L, et al. Influence of the pressure dependent coefficient of friction on deep drawing springback predictions[J]. Tribology International, 2016, 103: 266-273.
[11] OSAKADA K, MORI K, ALTAN T, et al. Mechanical servo press technology for metal forming[J]. CIRP Annals, 2011, 60(2): 651-672.
[12] 聂昕, 杨昕宇, 牛星辉, 等. 基于不同U形弯曲冲压工艺的高强度钢板回弹实验研究[J]. 锻压技术, 2019, 44(12): 1-10.
[12] NIE Xin, YANG Xinyu, NIU Xinghui, et al. Experimental study on springback of high strength steel sheet based on stamping processes under different U-shaped bending[J]. Forging & Stamping Technology, 2019, 44(12): 1-10.
[13] 巴发海, 李凯. 金属材料残余应力的测定方法[J]. 理化检验(物理分册), 2017, 53(11): 771-777.
[13] BA Fahai, LI Kai. Measurement methods of residual stress for metallic materials[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2017, 53(11): 771-777.
[14] RAJPUT A, PAUL S K. Understanding the physics of non-linear unloading-reloading behavior of metal for springback prediction[J]. Journal of Molecular Modeling, 2019, 25(11): 321.
文章导航

/