新型电力系统与综合能源

考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略

展开
  • 1.华北电力大学 电气与电子工程学院,北京 102206
    2.国网浙江省电力有限公司营销服务中心,杭州 311121
孙 毅(1972-),教授,博士生导师,从事能源互联网及其信息通信技术、物联网及现代传感技术等方面的研究. E-mail:sy@ncepu.edu.cn.

收稿日期: 2022-09-08

  修回日期: 2022-12-15

  录用日期: 2022-12-30

  网络出版日期: 2023-03-24

基金资助

国家电网公司总部科技项目“电力系统碳核查计量支撑基础网络构建与关键技术研究”(5400-202255274A-2-0-XG)

Low-Carbon Optimal Operation Strategy of Integrated Energy System Considering Generalized Energy Storage and LCA Carbon Emission

Expand
  • 1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
    2. Marketing Service Center, State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311121, China

Received date: 2022-09-08

  Revised date: 2022-12-15

  Accepted date: 2022-12-30

  Online published: 2023-03-24

摘要

综合能源系统(IES)是当前能源转型低碳发展背景下实现“双碳”目标的关键,为了提高IES碳减排能力,需要充分利用需求侧负荷资源和传统储能设备等广义储能资源参与IES优化.首先,建立一种综合考虑可再生能源、能源转换设备、广义储能设备、能源市场交易的IES优化运行模型.然后,使用生命周期评估法(LCA)对IES中能源循环、设备循环的全过程进行碳排放量计算,并将碳排放成本纳入系统总成本.最后,利用仿真实验验证所提模型不仅有利于降低IES总调度成本,还能降低系统的碳排放量,有效促进IES的低碳发展.

本文引用格式

孙毅, 谷家训, 郑顺林, 李熊, 陆春光, 刘炜 . 考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略[J]. 上海交通大学学报, 2024 , 58(5) : 647 -658 . DOI: 10.16183/j.cnki.jsjtu.2022.350

Abstract

Integrated energy system (IES) is the key to achieve the “dual carbon goals” in face of the current energy industry transformation and low-carbon development. In order to improve the carbon emission reduction capacity of the IES, it is necessary to make full use of the load resources on the demand side and the generalized energy storage resources such as traditional energy storage equipment to participate in the optimization of the IES. First, an IES optimization operation model considering renewable energy, energy conversion equipment, generalized energy storage equipment, and energy market transaction is established. Then, the life cycle assessment (LCA) method is used to calculate the carbon emission of the whole process of energy cycle and equipment cycle in the IES, and the carbon emission cost is included in the total cost of the system. The results of simulation experiments show that the proposed model is not only conducive to reducing the total scheduling cost of the IES, but also able to reduce the carbon emissions of the system and effectively promote the low-carbon development of the IES.

参考文献

[1] 习近平. 继往开来, 开启全球应对气候变化新征程——在气候雄心峰会上的讲话[N]. 人民日报, 2020-12-13( 02).
  XI Jinping. Building on past achievements and launching a new journey for global climate actions—Statement at the climate ambition summit[N]. People’s Daily, 2020-12-13( 02).
[2] 杨龙, 张沈习, 程浩忠, 等. 区域低碳综合能源系统规划关键技术与挑战[J]. 电网技术, 2022, 46(9): 3290-3303.
  YANG Long, ZHANG Shenxi, CHENG Haozhong, et al. Regional low-carbon integrated energy system planning: Key technologies and challenges[J]. Power System Technology, 2022, 46(9): 3290-3303.
[3] 朱建全, 刘海欣, 叶汉芳, 等. 园区综合能源系统优化运行研究综述[J]. 高电压技术, 2022, 48(7): 2469-2482.
  ZHU Jianquan, LIU Haixin, YE Hanfang, et al. Summary of research on optimal operation of comprehensive energy system in park[J]. High Voltage Engineering, 2022, 48(7): 2469-2482.
[4] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
  WANG Yongzhen, KANG Ligai, ZHANG Jing, et al. Development history, typical form and future trend of integrated energy system[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 84-95.
[5] 齐先军, 蒋中琦, 张晶晶, 等. 考虑碳捕集与综合需求响应互补的综合能源系统优化调度[J]. 电力自动化设备, 2023, 43(7): 133-141.
  QI Xianjun, JIANG Zhongqi, ZHANG Jingjing, et al. Optimal dispatching of integrated energy system considering complementation of carbon capture and integrated demand response[J]. Electric Power Automation Equipment, 2023, 43(7): 133-141.
[6] 高强, 王天群, 高挺, 等. 碳源/汇作用下气电热综合能源系统多目标分层协调优化调度[J/OL]. 电测与仪表. http://kns.cnki.net/kcms/detail/23.1202.TH.20220520.1934.012.html.
  GAO Qiang, WANG Tianqun, GAO Ting, et al. Research on optimal dispatch method of gas-electric-heat integrated energy system considering the effect of carbon sources and sinks[J/OL]. Electrical Measurement & Instrumentation. http://kns.cnki.net/kcms/detail/23.1202.TH.20220520.1934.012.html.
[7] 王俐英, 林嘉琳, 董厚琦, 等. 计及阶梯式碳交易的综合能源系统优化调度[J]. 系统仿真学报, 2022, 34(7): 1393-1404.
  WANG Liying, LIN Jialin, DONG Houqi, et al. Optimal dispatch of integrated energy system considering ladder-type carbon trading[J]. Journal of System Simulation, 2022, 34(7): 1393-1404.
[8] JAMALI A, AGHAEI J, ESMAILI M, et al. Self-scheduling approach to coordinating wind power producers with energy storage and demand response[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1210-1219.
[9] NIKOOBAKHT A, AGHAEI J, SHAFIE-KHAH M, et al. Assessing increased flexibility of energy storage and demand response to accommodate a high penetration of renewable energy sources[J]. IEEE Transactions on Sustainable Energy, 2018, 10(2): 659-669.
[10] 王瑞东, 吴杰康, 蔡志宏, 等. 含广义储能虚拟电厂电-气-热三阶段协同优化调度[J]. 电网技术, 2022, 46(5): 1857-1866.
  WANG Ruidong, WU Jiekang, CAI Zhihong, et al. Three-stage collaborative optimal scheduling of electricity, gas and heat in virtual power plant with generalized energy storage[J]. Power System Technology, 2022, 46(5): 1857-1866.
[11] 代琼丹, 杨莉, 林振智, 等. 考虑功能区差异性和虚拟储能的综合能源系统多元储能规划[J]. 电力自动化设备, 2021, 41(9): 182-190.
  DAI Qiongdan, YANG Li, LIN Zhenzhi, et al. Multi-storage planning of integrated energy system considering functional area difference and virtual storage[J]. Electric Power Automation Equipment, 2021, 41(9): 182-190.
[12] WANG D X, MENG K, GAO X D, et al. Coordinated dispatch of virtual energy storage systems in LV grids for voltage regulation[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2452-2462.
[13] 朱旭, 杨军, 李高俊杰, 等. 计及虚拟储能系统的区域综合能源系统优化调度策略[J]. 电力建设, 2020, 41(8): 99-110.
  ZHU Xu, YANG Jun, LI Gaojunjie, et al. Optimal dispatching strategy of regional integrated energy system considering virtual energy storage system[J]. Electric Power Construction, 2020, 41(8): 99-110.
[14] 刘洋, 李立生, 刘志伟, 等. 考虑广义储能集群参与的配电网协同控制策略[J]. 电力建设, 2021, 42(8): 89-98.
  LIU Yang, LI Lisheng, LIU Zhiwei, et al. Cooperative control strategy of distribution network considering generalized energy storage cluster participation[J]. Electric Power Construction, 2021, 42(8): 89-98.
[15] 张大海, 贠韫韵, 王小君, 等. 考虑广义储能及光热电站的电热气互联综合能源系统经济调度[J]. 电力系统自动化, 2021, 45(19): 33-42.
  ZHANG Dahai, YUN Yunyun, WANG Xiaojun, et al. Economic dispatch of integrated electricity-heat-gas energy system considering generalized energy storage and concentrating solar power plant[J]. Automation of Electric Power Systems, 2021, 45(19): 33-42.
[16] 孙伟卿, 张婕, 叶磊, 等. 考虑广义储能的电力系统运行弹性优化[J]. 系统仿真学报, 2021, 33(4): 962-972.
  SUN Weiqing, ZHANG Jie, YE Lei, et al. Operation resilience optimization of power system considering generalized energy storage[J]. Journal of System Simulation, 2021, 33(4): 962-972.
[17] 吕祥梅, 刘天琪, 刘绚, 等. 考虑高比例新能源消纳的多能源园区日前低碳经济调度[J]. 上海交通大学学报, 2021, 55(12): 1586-1597.
  Lü Xiangmei, LIU Tianqi, LIU Xuan, et al. Low-carbon economic dispatch of multi-energy park considering high proportion of renewable energy[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1586-1597.
[18] 祝荣, 任永峰, 孟庆天, 等. 基于合作博弈的综合能源系统电-热-气协同优化运行策略[J]. 太阳能学报, 2022, 43(4): 20-29.
  ZHU Rong, REN Yongfeng, MENG Qingtian, et al. Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J]. Acta Energiae Solaris Sinica, 2022, 43(4): 20-29.
[19] 江婷, 邓晖, 陆承宇, 等. 电能量和旋转备用市场下电-热综合能源系统低碳优化运行[J]. 上海交通大学学报, 2021, 55(12): 1650-1662.
  JIANG Ting, DENG Hui, LU Chengyu, et al. Low-carbon optimal operation of an integrated electricity-heat energy system in electric energy and spinning reserve market[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1650-1662.
[20] 赵海彭, 苗世洪, 李超, 等. 考虑冷热电需求耦合响应特性的园区综合能源系统优化运行策略研究[J]. 中国电机工程学报, 2022, 42(2): 573-588.
  ZHAO Haipeng, MIAO Shihong, LI Chao, et al. Study on optimal operation strategy of comprehensive energy system in park considering coupling response characteristics of cooling, heating and power demand[J]. Proceedings of the CSEE, 2022, 42(2): 573-588.
[21] 黄景光, 熊华健, 李振兴, 等. 基于生命周期法和碳权交易的综合能源系统低碳经济调度[J]. 电测与仪表, 2022, 59(3): 82-91.
  HUANG Jingguang, XIONG Huajian, LI Zhenxing, et al. Low-carbon economic dispatch of integrated energy system based on life cycle method and carbon trading[J]. Electrical Measurement & Instrumentation, 2022, 59(3): 82-91.
[22] 尹硕, 郭兴五, 燕景, 等. 考虑高渗透率和碳排放约束的园区综合能源系统优化运行研究[J]. 华电技术, 2021, 43(4): 1-7.
  YIN Shuo, GUO Xingwu, YAN Jing, et al. Study on optimized operation on integrated energy system in parks with high permeability and carbon emission constraints[J]. Huadian Technology, 2021, 43(4): 1-7.
[23] 汪超群, 陈懿, 文福拴, 等. 电力系统碳排放流理论改进与完善[J]. 电网技术, 2022, 46(5): 1683-1693.
  WANG Chaoqun, CHEN Yi, WEN Fushuan, et al. Improvement and perfection of carbon emission flow theory in power systems[J]. Power System Technology, 2022, 46(5): 1683-1693.
[24] 刘哲远, 邢海军, 程浩忠, 等. 考虑碳排放流及需求响应的综合能源系统双层优化调度[J]. 高电压技术, 2023, 49(1): 169-178.
  LIU Zheyuan, XING Haijun, CHENG Haozhong, et al. Bi-Level optimal scheduling of integrated energy system considering carbon emission flow and demand response[J]. High Voltage Engineering, 2023, 49(1): 169-178.
[25] 耿晓倩, 徐玉杰, 黄景坚, 等. 先进压缩空气储能系统全生命周期能耗及二氧化碳排放[J]. 储能科学与技术, 2022, 11(9): 2971-2979.
  GENG Xiaoqian, XU Yujie, HUANG Jingjian, et al. Life cycle energy consumption and carbon emissions of advanced adiabatic compressed air energy storage[J]. Energy Storage Science & Technology, 2022, 11(9): 2971-2979.
[26] 文军, 刘楠, 裴杰, 等. 储能技术全生命周期度电成本分析[J]. 热力发电, 2021, 50(8): 24-29.
  WEN Jun, LIU Nan, PEI Jie, et al. Life cycle cost analysis for energy storage technology[J]. Thermal Power Generation, 2021, 50(8): 24-29.
[27] 向宁, 王礼茂, 屈秋实, 等. 基于生命周期评估的海、陆风电系统排放对比[J]. 资源科学, 2021, 43(4): 745-755.
  XIANG Ning, WANG Limao, QU Qiushi, et al. Comparison of emissions from offshore and onshore wind power systems based on life cycle assessment[J]. Resources Science, 2021, 43(4): 745-755.
[28] 崔杨, 周慧娟, 仲悟之, 等. 考虑广义储能与火电联合调峰的日前-日内两阶段滚动优化调度[J]. 电网技术, 2021, 45(1): 10-19.
  CUI Yang, ZHOU Huijuan, ZHONG Wuzhi, et al. Two-stage day-ahead and intra-day rolling optimization scheduling considering joint peak regulation of generalized energy storage and thermal power[J]. Power System Technology, 2021, 45(1): 10-19.
[29] 李宏仲, 房宇娇, 肖宝辉. 考虑广义储能的区域综合能源系统优化运行研究[J]. 电网技术, 2019, 43(9): 3130-3138.
  LI Hongzhong, FANG Yujiao, XIAO Baohui. Study on optimal operation of regional integrated energy system considering generalized energy storage[J]. Power System Technology, 2019, 43(9): 3130-3138.
[30] WANG Y, PAN Z, ZHANG W X, et al. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review[J]. Environmental Research. Section A, 2022, 207: 112219.
[31] WANG Z, SHI Y, TANG Y, et al. Low carbon economy operation and energy efficiency analysis of integrated energy systems considering LCA energy chain and carbon trading mechanism[J]. Proceedings of the CSEE, 2019, 39(06): 1614-1626.
[32] WANG R T, WEN X Y, WANG X Y, et al. Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading[J]. Applied Energy, 2022, 311: 118664.
[33] 丛琳, 王冰, 王楠, 等. 考虑需求侧多能源响应的虚拟电厂优化运行策略[J]. 科学技术与工程, 2021, 21(17): 7133-7142.
  CONG Lin, WANG Bing, WANG Nan, et al. Optimal operation strategy of virtual power plant considering integrated demand response in demand side[J]. Science Technology & Engineering, 2021, 21(17): 7133-7142.
[34] 王泽森, 石岩, 唐艳梅, 等. 考虑LCA能源链与碳交易机制的综合能源系统低碳经济运行及能效分析[J]. 中国电机工程学报, 2019, 39(6): 1614-1626.
  WANG Zesen, SHI Yan, TANG Yanmei, et al. Low-carbon economic operation and energy efficiency analysis of comprehensive energy system considering LCA energy chain and carbon trading mechanism[J]. Proceedings of the CSEE, 2019, 39(6): 1614-1626.
[35] 郭敏晓. 风力、光伏及生物质发电的生命周期CO2排放核算[D]. 北京: 清华大学, 2012.
  GUO Minxiao. Life cycle CO2 emission accounting of wind power, photovoltaic and biomass power generation[D]. Beijing: Tsinghua University, 2012.
[36] 杨东, 刘晶茹, 杨建新, 等. 基于生命周期评价的风力发电机碳足迹分析[J]. 环境科学学报, 2015, 35(3): 927-934.
  YANG Dong, LIU Jingru, YANG Jianxin, et al. Carbon footprint of wind turbine by life cycle assessment[J]. Acta Scientiae Circumstantiae, 2015, 35(3): 927-934.
[37] 贾亚雷, 王继选, 韩中合, 等. 基于LCA的风力发电、光伏发电及燃煤发电的环境负荷分析[J]. 动力工程学报, 2016, 36(12): 1000-1009.
  JIA Yalei, WANG Jixuan, HAN Zhonghe, et al. Analysis on environmental load of wind, PV and coal-fired power generation based on life cycle assessment[J]. Journal of Chinese Society of Power Engineering, 2016, 36(12): 1000-1009.
[38] 翁琳, 陈剑波. 光伏系统基于全生命周期碳排放量计算的环境与经济效益分析[J]. 上海理工大学学报, 2017, 39(3): 282-288.
  WENG Lin, CHEN Jianbo. Environmental and economic analysis on the carbon dioxide emissions calculation in the life cycle of a photovoltaic system[J]. Journal of University of Shanghai for Science & Technology, 2017, 39(3): 282-288.
[39] LI X, OU X, ZHANG X, et al. Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010[J]. Energy, 2013, 50: 15-23.
[40] 王彦哲, 周胜, 姚子麟, 等. 中国煤电生命周期二氧化碳和大气污染物排放相互影响建模分析[J]. 中国电力, 2021, 54(8): 128-135.
  WANG Yanzhe, ZHOU Sheng, YAO Zilin, et al. Life cycle modeling analysis of the interaction between carbon dioxide and air pollutant emissions of coal power in China[J]. Electric Power, 2021, 54(8): 128-135.
[41] 夏德建, 任玉珑, 史乐峰. 中国煤电能源链的生命周期碳排放系数计量[J]. 统计研究, 2010, 27(8): 82-89.
  XIA Dejian, REN Yulong, SHI Lefeng. Measurement of life-cycle carbon equivalent emissions of coal-energy chain[J]. Statistical Research, 2010, 27(8): 82-89.
[42] 姜子英, 潘自强, 邢江, 等. 中国核电能源链的生命周期温室气体排放研究[J]. 中国环境科学, 2015, 35(11): 3502-3510.
  JIANG Ziying, PAN Ziqiang, XING Jiang, et al. Greenhouse gas emissions from nuclear power chain life cycle in China[J]. China Environmental Science, 2015, 35(11): 3502-3510.
[43] 董志强, 马晓茜, 张凌, 等. 天然气利用对环境影响的生命周期分析[J]. 天然气工业, 2003, 23(6): 126-130.
  DONG Zhiqiang, MA Xiaoqian, ZHANG Ling, et al. Life cycle assessment for influence of using natural gas on environment[J]. Natural Gas Industry, 2003, 23(6): 126-130.
[44] 付子航. 煤制天然气碳排放全生命周期分析及横向比较[J]. 天然气工业, 2010, 30(9): 100-104.
  FU Zihang. Life cycle assessment of carbon emission from synthetic natural gas(SNG) and its horizontal comparison analysis[J]. Natural Gas Industry, 2010, 30(9): 100-104.
[45] 谭艳秋. 电力系统应用中电池储能系统的生命周期温室气体影响分析[D]. 南京: 南京大学, 2017.
  TAN Yanqiu. Analysis on the influence of greenhouse gases in the life cycle of battery energy storage system in power system application[D]. Nanjing: Nanjing University, 2017.
文章导航

/