船舶海洋与建筑工程

基于双惯容调谐质量系统的半潜式海上风力机振动控制

  • 曾伟杰 ,
  • 张颖 ,
  • 邓燕飞 ,
  • 郭川睿 ,
  • 任伟新
展开
  • 1.深圳大学 土木与交通工程学院,广东 深圳 518061
    2.广东工业大学 机电学院,广州 510006
    3.哈尔滨工业大学 深圳智能海洋工程研究院,广东 深圳 518055
曾伟杰(1997-),硕士生,从事海上风力机减振减载研究.
张 颖,副教授;E-mail:sara.zhangying@gdut.edu.cn.

收稿日期: 2023-01-16

  修回日期: 2023-03-07

  录用日期: 2023-03-14

  网络出版日期: 2023-03-19

基金资助

国家自然科学基金(52008259);深圳市海上基础设施安全与监测重点实验室(筹建启动)(ZDSYS20201020162400001)

Vibration Control of Semi-Submersible Offshore Wind Turbines Using Inerter-Based Absorbers

  • ZENG Weijie ,
  • ZHANG Ying ,
  • DENG Yanfei ,
  • GUO Chuanrui ,
  • REN Weixin
Expand
  • 1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061, Guangdong, China
    2. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
    3. Intelligent Ocean Engineering Research Institute, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China

Received date: 2023-01-16

  Revised date: 2023-03-07

  Accepted date: 2023-03-14

  Online published: 2023-03-19

摘要

与固定式海上风力机相比,漂浮式海上风力机的振动问题更为突出,进一步控制漂浮式海上风力机的振动成为了工程难题.针对此问题,探索了惯容调谐质量阻尼器(惯容-TMD,即IBA)系统对半潜式海上风力机的振动抑制效果,并提出一种基于结构阻抗的惯容-TMD综合优化设计方法,从整个设计空间出发保证惯容-TMD的最优性.为寻求最优的减振效果,基于达朗贝尔原理建立风力机-惯容-TMD动力学模型,采用双IBA的控制策略同时对半潜式海上风力机浮台和塔筒的振动响应进行抑制,并从增益效果角度,比较了双IBA与双TMD的减振性能.最后对OpenFAST软件进行二次开发,数值验证了风浪联合作用下双IBA相对于双TMD减振性能的提升.结果表明:双减振装置的减振性能相较于单个减振装置有明显提升,且双IBA振动控制效果要优于双TMD;此外,基于惯容器质量增益效果,在达到最优TMD相同减振效果的情况下,机舱惯容-TMD (NIBA)和浮台惯容-TMD (PIBA)分别可将结构减振器中质量元件的质量减少23.9%和32.2%,大幅降低装置成本.

本文引用格式

曾伟杰 , 张颖 , 邓燕飞 , 郭川睿 , 任伟新 . 基于双惯容调谐质量系统的半潜式海上风力机振动控制[J]. 上海交通大学学报, 2024 , 58(7) : 983 -994 . DOI: 10.16183/j.cnki.jsjtu.2023.019

Abstract

Compared with fixed offshore wind turbines, the vibration problem of floating offshore wind turbines is particularly prominent, and further reduction of the vibration of floating offshore wind turbines has become an engineering challenge. In order to solve this problem, a novel vibration suppression device, inerter-based absorber (IBA) is introduced, and the vibration control of semi-submersible offshore wind turbines is studied. A comprehensive optimization method, namely the structure-immittance approach, is utilized to design the IBA in a systematic way. In order to search for the optimum vibration suppression performance, a simplified dynamic model of the semi-submersible offshore wind turbine, and the IBA dynamic equations are established using D’Alembert’s principle. Simultaneous suppression of the vibration response of the floating platform and tower of a semi-submersible offshore wind turbine is realized using the dual IBA control strategy. Furthermore, by implementing the optimum IBA in the OpenFAST software, the vibration suppression benefits of the dual IBA compared with the dual tuned mass damper (TMD) are verified under the coupling effects of wind and waves. The results show that the vibration control performance of the dual IBA control strategy is significantly better than that of the single one, and that of the dual IBA is better than that of the dual TMD. In addition, under the condition of achieving the same suppression performance as the TMD, IBA installed at the nacelle and the platform can respectively decrease the required absorber mass by 23.9% and 32.2%, which can greatly reduce the manufacture cost of the device.

参考文献

[1] WILLIAMS R, LEE J, ZHAO F. Global offshore wind report 2022[R]. Brussels, Belgium: GWEC, 2022.
[2] WILLIAMS R, LEE J, ZHAO F. Global offshore wind report 2021[R]. Brussels, Belgium: GWEC, 2021.
[3] LACKNER M A, ROTEA M A. Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719.
[4] STEWART G, LACKNER M. Offshore wind turbine load reduction employing optimal passive tuned mass damping systems[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1090-1104.
[5] SI Y, KARIMI H R, GAO H. Modelling and optimization of a passive structural control design for a spar-type floating wind turbine[J]. Engineering Structures, 2014, 69: 168-182.
[6] 贺尔铭, 胡亚琪, 张扬. 基于TMD的海上浮动风力机结构振动控制研究[J]. 西北工业大学学报, 2014, 32(1): 55-61.
  HE Erming, HU Yaqi, ZHANG Yang. Structural vibration control of offshore floating wind turbine based on TMD[J]. Journal of Northwestern Polytechnical University, 2014, 32(1): 55-61.
[7] 杨佳佳, 贺尔铭, 胡亚琪. 浮动平台内TMD对Barge式海上浮动风机的振动控制研究[J]. 西北工业大学学报, 2018, 36(2): 238-245.
  YANG Jiajia, HE Erming, HU Yaqi. Vibration mitigation of the barge-type offshore wind turbine with a tuned mass damper on floating platform[J]. Journal of Northwestern Polytechnical University, 2018, 36(2): 238-245
[8] 杨佳佳, 贺尔铭, 姚文旭, 等. 抑制海上浮式风力机振动的TMD限位策略研究[J]. 振动与冲击, 2020, 39(15): 18-24.
  YANG Jiajia, HE Erming, YAO Wenxu, et al. TMD limited position strategy for vibration suppression of floating offshore wind turbines[J]. Journal of Vibration and Shock, 2020, 39(15): 18-24.
[9] YANG J J, HE E M. Coupled modeling and structural vibration control for floating offshore wind turbine[J]. Renewable Energy, 2020, 157: 678-694.
[10] GUIMARAES P V B, DE MORAIS M V G, AVILA S M. Tuned mass damper inverted pendulum to reduce offshore wind turbine vibrations[M]//Vibration engineering and technology of machinery. Cham, Switzerland: Springer International Publishing, 2015: 379-388.
[11] LI C, ZHUANG T, ZHOU S, et al. Passive vibration control of a semi-submersible floating offshore wind turbine[J]. Applied Sciences, 2017, 7(6): 509-528.
[12] ZHANG Z, H?EG C. Dynamics and control of spar-type floating offshore wind turbines with tuned liquid column dampers[J]. Structural Control and Health Monitoring, 2020, 27(6): e2532-e2557.
[13] WEI X, ZHAO X. Vibration suppression of a floating hydrostatic wind turbine model using bidirectional tuned liquid column mass damper[J]. Wind Energy, 2020, 23(10): 1887-1904.
[14] CHEN M, PAPAGEORGIOU C, SCHEIBE F, et al. The missing mechanical circuit element[J]. IEEE Circuits and Systems Magazine, 2009, 9(1): 10-26.
[15] CHEN M Z, HU Y, HUANG L, et al. Influence of inerter on natural frequencies of vibration systems[J]. Journal of Sound and Vibration, 2014, 333(7): 1874-1887.
[16] HU Y, CHEN M Z. Performance evaluation for inerter-based dynamic vibration absorbers[J]. International Journal of Mechanical Sciences, 2015, 99: 297-307.
[17] 莊初立, 五十子幸树, 张永山. 极端地震下惯容器-弹簧-阻尼装置对隔震结构减震效果研究[J]. 振动与冲击, 2019, 38(12): 112-117.
  CHONG Cholap, KOHJU Ikago, ZHANG Yong-shan. Effectiveness of an inerter-spring-damper device in the seismic response control of an isolated structure under extreme earthquakes[J]. Journal of Vibration and Shock, 2019, 38(12): 112-117.
[18] ZHANG Z, H?EG C. Inerter-enhanced tuned mass damper for vibration damping of floating offshore wind turbines[J]. Ocean Engineering, 2021, 223: 108663.
[19] LI Y Y, PARK S, JIANG J Z, et al. Vibration suppression for monopile and spar-buoy offshore wind turbines using the structure—Immittance approach[J]. Wind Energy, 2020, 23(10): 1966-1985.
[20] ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the semisubmersible floating system for phase II of OC4[R]. Golden, USA: National Renewable Energy Laboratory, 2014.
[21] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Colorado, USA: National Renewable Energy Laboratory, 2009.
[22] HU Y L, WANG J N, CHEN M Z Q, et al. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control[J]. Engineering Structures, 2018, 177: 198-209.
[23] ZHANG S Y, JIANG J Z, NEILD S A. Passive vibration control: A structure-immittance approach[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2017, 473(2201): 20170011.
[24] ZHANG S Y, JIANG J Z, NEILD S. Optimal configurations for a linear vibration suppression device in a multi-storey building[J]. Structural Control and Health Monitoring, 2017, 24(3): e1887-e1904.
[25] STEWART G M. Load reduction of floating wind turbines using tuned mass dampers[D]. USA: University of Massachusetts Amherst, 2012.
[26] LA CAVA W, LACKNER M. Theory manual for the tuned mass damper module in FAST v8[R]. USA: University of Massachusetts Amherst, 2015.
[27] TC 88. Wind energy generation systems — Part 1. Design requirements: IEC 61400-1[S]. Geneva, Switzerland: International Electrotechnical Commission, 2019.
文章导航

/