新型电力系统与综合能源

考虑多重不确定性因素的可靠性指标计算与备用容量优化

展开
  • 1.湖南大学 电气与信息工程学院,长沙 410082
    2.湖南工商大学 计算机学院,长沙 410205
叶 伦(1992-),博士生,从事电力系统优化、辅助服务市场研究.

收稿日期: 2022-09-19

  修回日期: 2022-10-07

  录用日期: 2022-11-10

  网络出版日期: 2023-03-10

基金资助

湖南省教育厅重点项目(21A0385);湖南省自然科学基金面上项目(2022JJ30214)

Reliability Index Calculation and Reserve Capacity Optimization Considering Multiple Uncertainties

Expand
  • 1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    2. School of Computer Science, Hunan University of Technology and Business, Changsha 410205, China

Received date: 2022-09-19

  Revised date: 2022-10-07

  Accepted date: 2022-11-10

  Online published: 2023-03-10

摘要

在含高比例可再生能源的电力系统中,考虑多重不确定性因素并实现源荷协调的优化调度是电力系统运行的重要问题.为此,构建了基于多场景的概率性旋转备用优化模型,该模型综合考虑了风电和光伏出力预测误差、负荷预测误差及发电机非计划停运等多重不确定性因素对旋转备用容量的影响,将可再生能源弃电、系统切负荷分别作为特殊的备用资源融入发电日前调度计划,以提高电力系统的经济运行效率.改进了系统可再生能源削减期望和电量不足期望值两个可靠性指标的计算方法,减少了与该指标相关的不等式约束条件,用于提升模型的计算性能.该备用优化模型在兼顾场景多样性的同时,实现了多场景下系统的总成本最优.以改进的IEEE-RTS系统作为算例,验证了所提模型的有效性.算例结果表明,改进的可靠性指标计算方法能够有效降低备用优化模型的求解时间;建立的最优旋转备用优化方法能够实现系统日前旋转备用容量的动态配置,提升系统经济运行水平.

本文引用格式

叶伦, 欧阳旭, 姚建刚, 杨胜杰, 尹骏刚 . 考虑多重不确定性因素的可靠性指标计算与备用容量优化[J]. 上海交通大学学报, 2024 , 58(1) : 30 -39 . DOI: 10.16183/j.cnki.jsjtu.2022.366

Abstract

In power systems with a high proportion of renewable energy, to achieve coordinated optimal scheduling of source and load considering multiple uncertainties is an important issue in power system operation. Therefore, a probabilistic spinning reserve optimization model based on multiple scenarios is constructed. Multiple uncertain factors are considered in the model, such as wind power and solar power forecast errors, load forecast error and unscheduled generator outage. Renewable energy curtailment and load shedding are used as special reserve resources in the day-ahead security-constrained unit commitment (SCUC) to improve the economic operation efficiency. The calculations of reliability indexes, expected energy not served and expected energy curtailment, are simplified, and the inequality constraints related to these two indexes are reduced, which improves the computational performance of the model. The model optimizes the total expected cost considering multiple uncertainties. Case studies based on the IEEE-RTS demonstrate the effectiveness of the proposed model. The numerical results show that the improved calculation method of reliability indexes can effectively reduce the solution time of the SCUC model. The reserve optimization model can realize the dynamic allocation of the spinning reserve capacity of the system and improve economic operation of the system.

参考文献

[1] 黄强, 郭怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509.
[1] HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509.
[2] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
[2] KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11.
[3] ORTEGA-VAZQUEZ M A, KIRSCHEN D S. Estimating the spinning reserve requirements in systems with significant wind power generation penetration[J]. IEEE Transactions on Power System, 2009, 24(1):114-124.
[4] 苏鹏, 刘天琪, 李兴源. 含风电的系统最优旋转备用的确定[J]. 电网技术, 2010, 34(12): 158-162.
[4] SU Peng, LIU Tianqi, LI Xingyuan. Determination of optimal spinning reserve of power grid containing wind[J]. Power System Technology, 2010, 34(12): 158-162.
[5] LIU G, TOMSOVIV K. Quantifying spinning reserve in systems with significant wind power penetration[J]. IEEE Transactions on Power System, 2012, 27(4): 2385-2393.
[6] KHAZALI A, KALANTAR M. Spinning reserve quantification by a stochastic-probabilistic scheme for smart power systems with high wind penetration[J]. Energy Conversion and Management, 2015, 96: 242-257.
[7] LV J, DING T, BIE Z, et al. A novel linearization variant of reliability costs in the optimal scheduling model[J]. IEEE Transactions on Power System, 2017, 32(5): 4140-4142.
[8] LIU Y, JIANG C, SHEN J, et al. Cost allocation of spinning reserve based on risk contribution[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2015, 10: 664-673.
[9] ELA E, MILLIGAN M, KIRBY B. Operating reserves and variable generation[R]. Golden, USA: National Renewable Energy Laboratory, 2011.
[10] 陈厚合, 王杨, 张儒峰, 等. 考虑源荷协调的风电并网系统旋转备用容量优化[J]. 电力自动化设备, 2017, 37(8): 185-192.
[10] CHEN Houhe, WANG Yang, ZHANG Rufeng, et al. Spinning reserve capacity optimization considering coordination between source and load for power system with wind power[J]. Electric Power Automation Equipment, 2017, 37(8): 185-192.
[11] 黄瀚燕, 周明, 李庚银. 考虑多重不确定性和备用互济的含风电互联电力系统分散协调调度方法[J]. 电网技术, 2019, 42(2): 381-389.
[11] HUANG Hanyan, ZHOU Ming, LI Gengyin. Coordinated decentralized dispatch of wind-power-integrated multi-area interconnected power systems considering multiple uncertainties and mutual reserve support[J]. Power System Technology, 2019, 42(2): 381-389.
[12] YANG Y, BAO M, DING Y, et al. Impact of down spinning reserve on operation reliability of power systems[J]. Journal of Modern Power System and Clean Energy, 2020, 8(4): 709-718.
[13] 刘明涛, 谢俊, 张秋艳, 等. 碳交易环境下含风电电力系统短期生产模拟[J]. 上海交通大学学报, 2021, 55(12): 1598-1607.
[13] LIU Mingtao, XIE Jun, ZHANG Qiuyan, et al. Short-term production simulation of power system containing wind power under carbon trading environment[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1598-1607.
[14] 崔杨, 张汇泉, 仲悟之, 等. 考虑需求响应的含光热电站可再生能源高渗透率电力系统多源优化调度[J]. 高电压技术, 2020, 26(5): 1499-1509.
[14] CUI Yang, ZHANG Huiquan, ZHONG Wuzhi, et al. Multi-source optimal scheduling of renewable energy high-permeability power system with CSP plants considering demand response[J]. High Voltage Engineering, 2020, 26(5): 1499-1509.
[15] 林峰, 汪震, 王冠中, 等. 考虑风电降载的电力系统鲁棒备用调度模型[J]. 电力系统自动化, 2018, 42(19): 64-70.
[15] LIN Feng, WANG Zhen, WANG Guanzhong, et al. Robust reserve scheduling model of electric power system considering WTG de-loading capability[J]. Automation of Electric Power Systems, 2018, 42(19): 64-70.
[16] FABBRI A, ROMAN T G, ABBAD J R, et al. Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market[J]. IEEE Transactions on Power System, 2005, 20(3): 1440-1446.
[17] ZHAO S, FANG Y, WEI Z. Stochastic optimal dispatch of integrating concentrating solar power plants with wind farms[J]. International Journal of Electrical Power and Energy Systems, 2019, 109: 575-583.
[18] BILLINTON R, ALLAN R N. Reliability evaluation of power systems[M]. 2nd ed. New York, USA: Plenum Press, 1996.
[19] BOUFFARD F, GALIANA F D. An electricity market with a probabilistic spinning reserve criterion[J]. IEEE Transactions on Power System, 2004, 19(1): 300-307.
[20] GRIGG C, WONG P, ALBRECHT P, et al. The IEEE reliability test system — 1996[J]. IEEE Transactions on Power System, 1999, 14(3): 1010-1018.
文章导航

/