机械与动力工程

基于概率稀疏自注意力的IGBT模块剩余寿命跨工况预测

展开
  • 上海交通大学 机械与动力工程学院, 上海 200240
钟智伟(1998-),硕士生,从事电力电子可靠性研究.

收稿日期: 2020-12-30

  修回日期: 2022-03-10

  录用日期: 2022-04-25

  网络出版日期: 2023-01-06

基金资助

国家自然科学基金(51975356)

Remaining Useful Life Prediction of IGBT Modules Across Working Conditions Based on ProbSparse Self-Attention

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-12-30

  Revised date: 2022-03-10

  Accepted date: 2022-04-25

  Online published: 2023-01-06

摘要

为提高绝缘栅双极型晶体管(IGBT)模块跨工况剩余寿命的预测精度以提升其可靠性,针对不同工况下IGBT模块的瞬态热阻特征提出一种基于概率稀疏自注意力机制和迁移学习的剩余使用寿命预测方法.搭建了IGBT模块加速老化试验台,在不同温度区间进行IGBT模块功率循环实验,采集不同工况下该模块全生命周期状态数据,计算获得IGBT模块衰退过程中的瞬态热阻变化数据,提取并筛选能准确反映IGBT模块老化状态的瞬态热阻特征,并使用所提方法开展跨工况剩余使用寿命预测.实验结果表明,提出的IGBT模块剩余寿命的跨工况预测方法精度明显优于其他对比方法,特别是IGBT模块早期衰退过程中的剩余寿命预测精度得到了显著提升.

本文引用格式

钟智伟, 王誉翔, 黄亦翔, 肖登宇, 夏鹏程, 刘成良 . 基于概率稀疏自注意力的IGBT模块剩余寿命跨工况预测[J]. 上海交通大学学报, 2023 , 57(8) : 1005 -1015 . DOI: 10.16183/j.cnki.jsjtu.2021.538

Abstract

In order to improve the accuracy of remaining useful life (RUL) prediction of insulated gate bipolar transistor(IGBT) modules across working conditions to enhance their reliability, an RUL prediction method based on the ProbSparse self-attention mechanism and transfer learning was proposed based on the transient thermal resistance features of IGBT modules under different working conditions. An accelerated aging test bench of the IGBT module was designed ang built to perform power cycling experiments in different temperature ranges, and state data of full life-time under different working conditions were collected. Transient thermal resistance change data during the IGBT module degradation were calculated, and the transient thermal features that can accurately reflect the aging state of the IGBT module were extracted and selected. These features were used to predict the RUL of IGBT modules across different working conditions based on the proposed method. The experimental result shows that the accuracy of the proposed RUL prediction method of IGBT modules across working conditions outperforms other compared methods. Particularly, the RUL prediction accuracy during the early degradation stage has been significantly improved.

参考文献

[1] CARAMEL C, AUSTIN P, SANCHEZ J L, et al. Integrated IGBT short-circuit protection structure: Design and optimization[J]. Microelectronics Journal, 2006, 37(3): 249-256.
[2] 刘嘉诚. 基于机器学习算法的IGBT寿命预测研究[D]. 合肥: 合肥工业大学, 2020.
[2] LIU Jiacheng. IGBT life prediction based on machine learning algorithm[D]. Hefei: Hefei University of Technology, 2020.
[3] YANG S Y, BRYANT A, MAWBY P, et al. An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441-1451.
[4] GOPIREDDY L R, TOLBERT L M, OZPINECI B. Power cycle testing of power switches: A literature survey[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2465-2473.
[5] 唐圣学, 张继欣, 姚芳, 等. IGBT模块寿命预测方法研究综述[J]. 电源学报, 2021: 1-29.
[5] TANG Shengxue, ZHANG Jixin, YAO Fang, et al. An overview of lifetime prediction methods for IGBT power module[J]. Journal of Power Supply, 2021: 1-29.
[6] HUANG Q, PENG C, WANG L C, et al. Effects of current and bonding wires damage on high-power IGBT module reliability by electro-thermo-mechanical simulation[C]//2020 21st International Conference on Electronic Packaging Technology. Guangzhou, China: IEEE, 2020: 1-4.
[7] 张亚玲, 李志刚. 基于加速老化试验的IGBT寿命预测模型研究[J]. 电气传动, 2016, 46(10): 72-75.
[7] ZHANG Yaling, LI Zhigang. Research on IGBT lifetime prediction models based on accelerated lifetime test[J]. Electric Drive, 2016, 46(10): 72-75.
[8] 田航, 陈民武, 张振宇, 等. 牵引负荷对补偿装置功率模块寿命预测的影响及分析[J]. 电气化铁道, 2019, 30(1): 24-28.
[8] TIAN Hang, CHEN Minwu, ZHANG Zhenyu, et al. Influence to prediction of service life of power modules of compensation device caused by traction load and its analysis[J]. Electric Railway, 2019, 30(1): 24-28.
[9] 刘子英, 朱琛磊. 基于Elman神经网络模型的IGBT寿命预测[J]. 半导体技术, 2019, 44(5): 395-400.
[9] LIU Ziying, ZHU Chenlei. IGBT life prediction based on Elman neural network model[J]. Semiconductor Technology, 2019, 44(5): 395-400.
[10] 葛建文, 黄亦翔, 陶智宇, 等. 基于Transformer模型的IGBT剩余寿命预测[J]. 半导体技术, 2021, 46(4): 316-323.
[10] GE Jianwen, HUANG Yixiang, TAO Zhiyu, et al. Residual useful life prediction of IGBTs based on transformer model[J]. Semiconductor Technology, 2021, 46(4): 316-323.
[11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2017-12-06)[2021-12-30]. https//arxiv.org/abs/1706.03762.
[12] CAO Y D, DING Y F, JIA M P, et al. A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings[J]. Reliability Engineering & System Safety, 2021, 215: 107813.
[13] MO Y, WU Q H, LI X, et al. Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit[J]. Journal of Intelligent Manufacturing, 2021, 32(7): 1997-2006.
[14] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[EB/OL]. (2021-03-28)[2021-12-30]. https//arxiv.org/abs/2012.07436.
[15] GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]//34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 1243-1252.
[16] LONG M S, CAO Y, CAO Z J, et al. Transferable representation learning with deep adaptation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 3071-3085.
[17] 曾东, 孙林, 周雒维, 等. 基于加速老化试验IGBT性能退化特征参量的可靠性评估[J]. 电工电能新技术, 2019, 38(7): 20-28.
[17] ZENG Dong, SUN Lin, ZHOU Luowei, et al. Reliability evaluation of IGBT performance degradation characteristic parameters based on accelerated aging test[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(7): 20-28.
[18] 刘宾礼, 刘德志, 唐勇, 等. 基于加速寿命试验的IGBT模块寿命预测和失效分析[J]. 江苏大学学报(自然科学版), 2013, 34(5): 556-563.
[18] LIU Binli, LIU Dezhi, TANG Yong, et al. Lifetime prediction and failure analysis of IGBT module based on accelerated lifetime test[J]. Journal of Jiangsu University (Natural Science Edition), 2013, 34(5): 556-563.
[19] 张全. 电子元器件加速寿命试验技术浅析[J]. 空间电子技术, 2016, 13(6): 86-88.
[19] ZHANG Quan. Analysis on the accelerated life test technique of electronic components[J]. Space Electronic Technology, 2016, 13(6): 86-88.
[20] 姬煜轲, 侯婷, 何智鹏, 等. 一种柔直换流阀用压接型IGBT功率子模块加速老化试验方法[J]. 南方电网技术, 2021, 15(5): 1-11.
[20] JI Yuke, HOU Ting, HE Zhipeng, et al. An accelerated aging test method of press-pack IGBTs based power submodules for VSC-HVDC converter valve[J]. Southern Power System Technology, 2021, 15(5): 1-11.
[21] SMET V, FOREST F, HUSELSTEIN J J, et al. Ageing and failure modes of IGBT modules in high-temperature power cycling[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4931-4941.
[22] 陈一高, 陈民铀, 高兵, 等. 基于瞬态热阻的IGBT焊料层失效分析[J]. 中国电机工程学报, 2018, 38(10): 3059-3067.
[22] CHEN Yigao, CHEN Minyou, GAO Bing, et al. Evaluation of solder failure of an IGBT module based on transient thermal impedance[J]. Proceedings of the CSEE, 2018, 38(10): 3059-3067.
[23] MOROZUMI A, YAMADA K, MIYASAKA T, et al. Reliability of power cycling for IGBT power semiconductor modules[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 665-671.
[24] 卓鹏程, 严瑾, 郑美妹, 等. 面向滚动轴承全生命周期故障诊断的GA-OIHF Elman神经网络算法[J]. 上海交通大学学报, 2021, 55(10): 1255-1262.
[24] ZHUO Pengcheng, YAN Jin, ZHENG Meimei, et al. GA-OIHF Elman neural network algorithm for fault diagnosis of full life cycle of rolling bearing[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1255-1262.
[25] WANG Y, PENG Y Z, ZI Y Y, et al. A two-stage data-driven-based prognostic approach for bearing degradation problem[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 924-932.
[26] LIU H, DAI Z, SO D R, et al. Pay attention to mlps[J]. Advances in Neural Information Processing Systems, 2021, 34: 9204-9215.
[27] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.
[28] SUN B C, SAENKO K. Deep coral: Correlation alignment for deep domain adaptation[C/OL].(2016-11-24)[2021-12-30]. https//link.springer.com/chapter/10.1007/978-3-319-49409-8_35.
文章导航

/