航空航天

高精度WCNS格式加权策略改进与数值验证

展开
  • 上海交通大学 航空航天学院,上海 200240
杨 强(1995-),硕士生,从事飞行器设计研究.

收稿日期: 2022-01-17

  修回日期: 2022-06-14

  录用日期: 2022-07-12

  网络出版日期: 2022-09-16

基金资助

国家自然科学基金(92052101)

Improvement and Numerical Verification of Weighting Strategy for High Precision WCNS Scheme

Expand
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-01-17

  Revised date: 2022-06-14

  Accepted date: 2022-07-12

  Online published: 2022-09-16

摘要

为了揭示复杂的流动机理,国内外提出了一系列高阶精度格式,其中加权非线性紧致格式(WCNS)具有良好的激波捕捉能力,已广泛用于复杂流动数值模拟,然而在模拟小尺度流动时分辨率不足、耗散偏大.在WCNS的框架下,借鉴基于目标本质无振荡(TENO)格式的加权策略,将间断检测和模板加权的新方法引入WCNS构造中,发展了一种7阶精度的WCNS7-T格式,通过一维激波管问题和二维黎曼问题等开展算例测试,并与传统的WCNS7-Z格式计算结果进行对比来验证新格式的改善性能.数值实验表明,WCNS7-T格式更好地抑制了间断附近的数值振荡,在提高分辨率和激波捕捉能力的同时也进一步降低了耗散.

本文引用格式

杨强, 李伟鹏 . 高精度WCNS格式加权策略改进与数值验证[J]. 上海交通大学学报, 2023 , 57(6) : 719 -727 . DOI: 10.16183/j.cnki.jsjtu.2022.014

Abstract

In order to reveal the complex flow mechanism, a series of high-order precision schemes have been proposed at home and abroad, of which, the weighted compact nonlinear scheme (WCNS) has a good shock capture ability and has been widely used in the numerical simulation of complex flows. However, it has insufficient resolution and large dissipation in the simulation of small-scale flows. In the framework of the WCNS, by using the weighting strategy of the targeted essentially non-oscillatory (TENO) scheme for reference, this paper introduces the new methods of discontinuity detection and template weighting into the construction of the WCNS scheme, and develops a WCNS7-T scheme with a 7-order accuracy. Example tests are conducted through one-dimensional shock tube problem and two-dimensional Riemann problem. By comparing with the traditional WCNS7-Z scheme, the improved performance of the new scheme is verified. The numerical experiments show that the WCNS7-T scheme can better suppress the numerical oscillation near the discontinuity, improve the resolution and shock capture ability, and further reduce the dissipation.

参考文献

[1] HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1997, 135(2): 260-278.
[2] LIOU M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics, 1996, 129(2): 364-382.
[3] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics, 1987, 71(1): 231-303.
[4] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1989, 77(2): 439-471.
[5] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
[6] DENG X, ZHANG H. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.
[7] FU L, HU X Y, ADAMS N A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2018, 374: 724-751.
[8] YE C C, WAN Z H, SUN D J. An alternative formulation of targeted ENO scheme for hyperbolic conservation laws[J]. Computers & Fluids, 2022, 238: 105368.
[9] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.
[10] MARTIN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1): 270-289.
[11] HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2010, 229(23): 8952-8965.
[12] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452.
[13] GEROLYMOS G A D. SéNéCHAL , VALLET I. Very-high-order WENO schemes[J]. Journal of Computational Physics, 2009, 228(23): 8481-8524.
[14] PIROZZOLI S. On the spectral properties of shock-capturing schemes[J]. Journal of Computational Physics, 2006, 219(2): 489-497.
[15] JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics, 2010, 229(4): 1213-1237.
[16] DENG X, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130(1): 77-91.
[17] PENG J, LIU S, LI S, et al. An efficient targeted ENO scheme with local adaptive dissipation for compressible flow simulation[J]. Journal of Computational Physics, 2021, 425: 109902.
[18] ZHANG H, ZHANG F, XU C. Towards optimal high-order compact schemes for simulating compressible flows[J]. Applied Mathematics and Computation, 2019, 355: 221-237.
[19] 马燕凯, 刘化勇, 燕振国, 等. 基于 HWCNS 格式的紧致插值方法研究[J]. 计算力学学报, 2015, 32(3): 388-393.
[19] MA Yankai, LIU Huayong, YAN Zhenguo, et al. Research on compact interpolation method based on HWCNS scheme[J]. Chinese Journal of Computational Mechanics, 2015, 32(3): 388-393.
[20] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2): 250-258.
[21] LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1): 23-39.
[22] VAN LEER B. Flux-vector splitting for the Euler equations[J]. Lecture Notes in Physics, 1982, 170(1): 507-512.
[23] HIEJIMA T. A high-order weighted compact nonlinear scheme for compressible flows[J]. Computers & Fluids, 2022, 232: 105199.
[24] EF T, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1): 25-34.
[25] GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of Computation, 1998, 67(221): 73-85.
[26] WONGA M L, LELEA S K. High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible flows[J]. Journal of Computational Physics, 2017, 339: 179-209.
[27] LAX P D, LIU X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J]. Siam Journal on Scientific Computing, 1998, 19(2): 319-340.
[28] ZHANG H, ZHANG F, LIU J, et al. A simple extended compact nonlinear scheme with adaptive dissipation control[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 105191.
[29] SHI J, ZHANG Y T, SHU C W. Resolution of high order WENO schemes for complicated flow structures[J]. Journal of Computational Physics, 2003, 186(2): 690-696.
[30] ZHAO G, SUN M, XIE S, et al. Numerical dissipation control in an adaptive WCNS with a new smoothness indicator[J]. Applied Mathematics and Computation, 2018, 330: 239-253.
文章导航

/