制导、导航与控制

基于相对速度和位置辅助的无人机编队协同导航

展开
  • 1.西北工业大学 自动化学院, 西安 710072
    2.航空工业西安飞行自动控制研究所, 西安 710065
郭鹏军(1996-),男,陕西省咸阳市人,博士生,从事无人机集群导航研究.

收稿日期: 2022-06-21

  网络出版日期: 2022-09-05

基金资助

国家自然科学基金(61933010);航空科学基金(201905018002);航空科学基金(201905018003)

Cooperative Navigation of UAV Formation Based on Relative Velocity and Position Assistance

Expand
  • 1. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
    2. Xi’an Flight Automatic Control Research Institute, Aviation Industry Corporation of China, Ltd., Xi’an 710065, China

Received date: 2022-06-21

  Online published: 2022-09-05

摘要

惯性导航系统的误差随时间累积,仅依靠惯性导航系统进行定位的无人机编队无法在长航时飞行中获取高精度导航信息.针对这一问题,面向主从式无人机编队提出一种协同导航方案.首先,在无人机上配置相对导航传感器,测量主从无人机编队成员之间的相对速度和相对位置信息;其次,考虑编队成员之间的相对位姿,研究空间统一转换方案,将编队各成员依靠惯性导航系统测量的绝对导航信息与相对传感器测量的相对导航信息统一到同一导航坐标系下;最后,给出基于相对速度和相对位置辅助的协同导航方案.30 min仿真结果表明,采取该方案后,从机各方向上的速度和位置误差分别收敛至0.1 m/s和5 m,证实该方案相较于惯性导航系统更适用于长航时飞行场景.

本文引用格式

郭鹏军, 张睿, 高关根, 许斌 . 基于相对速度和位置辅助的无人机编队协同导航[J]. 上海交通大学学报, 2022 , 56(11) : 1438 -1446 . DOI: 10.16183/j.cnki.jsjtu.2022.232

Abstract

Because the navigation errors of inertial navigation system accumulate with time, the unmanned aerial vehicle (UAV) formation that only relies on inertial navigation system for positioning cannot obtain precision navigation information in long time flight. To solve this problem, this paper proposes a cooperative navigation scheme for master-slave UAV formation. First, the UAV is equipped with relative navigation sensors to measure the relative velocity and position information between the members of the master-slave UAV formation. Then, considering the relative pose of formation members, the spatial unified transformation scheme is studied. The absolute navigation information measured by each member of UAV formation by inertial navigation system and the relative navigation information measured by relative sensors is unified into the same navigation coordinate system. Finally, a cooperative navigation scheme based on relative velocity and relative position assistance is given. The 30 min simulation results show that the speed and position errors of each cluster converge to 0.1 m/s and 5 m respectively under this scheme, which is more suitable than the inertial navigation system.

参考文献

[1] 武成锋, 程进, 郭晓云, 等. 飞行器集群协同定位与导航对抗技术发展与展望[J]. 宇航学报, 2022, 43(2): 131-142.
[1] WU Chengfeng, CHENG Jin, GUO Xiaoyun, et al. Development and prospect of aircraft clusters cooperative positioning and navigation countermeasures technology[J]. Journal of Astronautics, 2022, 43(2): 131-142.
[2] XIONG J, CHEONG J W, XIONG Z, et al. Hybrid cooperative positioning for vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 714-727.
[3] XING X J, GUI H R, MA Z, et al. Multi-source fault tolerant integrated navigation for a certain UAV based on INS/BD/RP/TAN[C]∥2019 IEEE 15th International Conference on Control and Automation. Edinburgh, UK: IEEE, 2019: 313-318.
[4] 徐博, 白金磊, 郝燕玲, 等. 多AUV协同导航问题的研究现状与进展[J]. 自动化学报, 2015, 41(3): 445-461.
[4] XU Bo, BAI Jinlei, HAO Yanling, et al. The research status and progress of cooperative navigation for multiple AUVs[J]. Acta Automatica Sinica, 2015, 41(3): 445-461.
[5] 李鹏, 阮晓钢, 朱晓庆, 等. 基于深度强化学习的区域化视觉导航方法[J]. 上海交通大学学报, 2021, 55(5): 575-585.
[5] LI Peng, RUAN Xiaogang, ZHU Xioaqing, et al. A regionalization vision navigation method based on deep reinforcement learning[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 575-585.
[6] 刘晓洋, 徐胜红. 无人机编队分层式协同导航仿真研究[J]. 计算机仿真, 2020, 36(10): 44-48.
[6] LIU Xiaoyang, XU Shenghong. Simulation research on hierarchical cooperative navigation of UAV formation[J]. Computer Simulation, 2020, 36(10): 44-48.
[7] MOHIUDDIN A, TAREK T, ZWEIRI Y, et al. A survey of single and multi-UAV aerial manipulation[J]. Unmanned Systems, 2020, 8(2): 119-147.
[8] 曲法义, 王小刚, 崔乃刚, 等. 基于惯导/GPS/视觉的无人机容错相对导航方法[J]. 中国惯性技术学报, 2013, (6): 781-785.
[8] QU Fayi, WANG Xiaogang, CUI Naigang, et al. Fault-tolerance relative navigation approach based on SINS/GPS/Vision for UAV[J]. Journal of Chinese Inertial Technology, 2013, (6): 781-785.
[9] TOMIC S, BEKO M, DINIS R, et al. Distributed algorithm for target localization in wireless sensor networks using RSS and AoA measurements[J]. Pervasive and Mobile Computing, 2017, 37: 63-77.
[10] 谷旭平, 唐大全. 基于联邦滤波算法的无人机集群分层协同导航[J]. 系统工程与电子技术, 2022, 44(3): 967-976.
[10] GU Xuping, TANG Daquan. Hierarchical cooperative navigation of UAV swarm based on federated filtering algorithm[J]. Systems Engineering and Electronics, 2022, 44(3): 967-976.
[11] 郭继峰, 郑红星, 贾涛, 等. 异构无人系统协同作战关键技术综述[J]. 宇航学报, 2020, 41(6): 686-696.
[11] GUO Jifeng, ZHENG Hongxing, JIA Tao, et al. Summary of key technologies for heterogeneous unmanned system cooperative operations[J]. Journal of Astronautics, 2020, 41 (6): 686-696.
[12] 潘瑞鸿, 徐胜红. 基于几何特性的多无人机协同导航算法[J]. 兵器装备工程学报, 2017, 38(10): 55-59.
[12] PAN Ruihong, XU Shenghong. Multi-UAV cooperative navigation algorithm based on geometric characteristics[J]. Journal of Ordnance Equipment Engineering, 2017, 38(10): 55-59.
[13] XU H, WANG L Q, ZHANG Y C, et al. Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm[C]∥2020 IEEE International Conference on Robotics and Automation. Paris, France: IEEE, 2020: 8776-8782.
[14] 陈超. UAV进近阶段组合导航信息融合方案设计[J]. 电光与控制, 2020, 27(2): 79-84.
[14] CHEN Chao. Design of an information fusion scheme for integrated navigation of UAVs in approaching stage[J]. Electronics Optics & Control, 2020, 27(2): 79-84.
[15] 秦永元. 惯性导航[M]. 第二版. 北京: 科学出版社, 2014.
[15] QIN Yongyuan. Inertial navigation[M]. 2nd ed. Beijing: Science Press, 2014.
文章导航

/