制导、导航与控制

深空探测器接近段自主导航的滑动窗口自适应滤波方法

展开
  • 北京航空航天大学 仪器科学与光电工程学院,北京 100091
张文佳(1996-),男,山东省济宁市人,硕士生,从事卡尔曼滤波、信号处理、天文导航研究.

收稿日期: 2022-06-21

  网络出版日期: 2022-09-05

基金资助

国家自然科学基金(61873196);国家重点大学基础研究经费(YWF-19-BJ-J-307);国家重点大学基础研究经费(YWF-19-BJ-J-82)

A Sliding Window Adaptive Filtering Algorithm for Autonomous Navigation of the Approach Phase of Deep Space Probe

Expand
  • School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100091, China

Received date: 2022-06-21

  Online published: 2022-09-05

摘要

当深空探测器接近目标行星时,由于目标行星引力快速增加,轨道动力学模型会出现较快的加速度变化.由于噪声协方差不完全已知,所以传统的滤波方法无法获得导航参数的最优估计,难以满足接近段导航系统的性能要求.为满足系统高稳定性和高精度需求,提出一种基于系统噪声协方差的滑动窗口自适应非线性滤波方法.通过构造系统噪声协方差更新函数,使用滑动窗口对噪声协方差平稳化处理,将速度噪声引起的误差与位置噪声引起的误差隔离开,实时更新所使用的滤波参数信息,自适应调节系统噪声协方差.以火星探测器为例进行仿真,仿真结果表明,相对于传统的无迹卡尔曼滤波方法,该方法获取的位置精度和速度精度分别提高90.97%和66.17%,抑制了系统模型上快速变化的积分误差,并解决传统滤波方法的发散问题.此外,分析了滤波周期和窗口大小对导航性能的影响,为深空探测自主导航提供了一种可行的自适应滤波新方法.

本文引用格式

张文佳, 马辛 . 深空探测器接近段自主导航的滑动窗口自适应滤波方法[J]. 上海交通大学学报, 2022 , 56(11) : 1461 -1469 . DOI: 10.16183/j.cnki.jsjtu.2022.233

Abstract

When the deep space probe approaches the target planet, due to the rapid increase of the gravity of the target planet, the orbital dynamics model will have a rapid acceleration change. Because the noise covariance is not completely known, the traditional filtering algorithm cannot obtain the optimal estimation of navigation parameters, which is difficult to meet the performance requirements of the approach navigation system. In order to meet the requirements of high stability and accuracy of the system, a sliding window adaptive nonlinear filtering algorithm based on system noise covariance is proposed. By constructing the system noise covariance update function and using the sliding window to smooth the noise covariance, the errors caused by velocity noise and position noise are separated, the filter parameter information used is updated in real time, and the system noise covariance is adjusted adaptively. Taking the Mars probe as an example, the simulation results show that, compared with the traditional unscented Kalman filtering method, the position accuracy and velocity accuracy of the proposed method are improved by 90.97% and 66.17% respectively, which suppresses the rapidly changing integral error on the system model, and solves the divergence problem of the traditional filtering method. In addition, the influence of filtering period and window size on navigation performance is analyzed, which provides a feasible new adaptive filtering method for autonomous navigation of deep space exploration.

参考文献

[1] 吴伟仁, 王大轶, 宁晓琳. 深空探测器自主导航原理与技术[M]. 北京: 中国宇航出版社, 2011.
[1] WU Weiren, WANG Dayi, NING Xiaolin. Principle and technology of autonomous navigation for deep-space probe[M]. Beijing: China Astronautic Publishing House, 2011.
[2] 房建成, 宁晓琳. 深空探测器自主天文导航方法[M]. 西安: 西北工业大学出版社, 2010.
[2] FANG Jiancheng, NING Xiaolin. Autonomous celestial navigation method for a deep-space probe[M]. Xi’an: Northwestern Polytechnic University Press, 2010.
[3] YU Z S, CUI P Y, CRASSIDIS J L. Design and optimization of navigation and guidance techniques for Mars pinpoint landing: Review and prospect[J]. Progress in Aerospace Sciences, 2017, 94: 82-94.
[4] MA X, NING X L, FANG J C. Analysis of orbital dynamic equation in navigation for a Mars gravity-assist mission[J]. The Journal of Navigation, 2012, 65(3): 531-548.
[5] BHASKARAN S. Autonomous navigation for deep space missions[C]∥SpaceOps 2012 Conference. Stockholm, Sweden: AIAA, 2012: 1267135.
[6] FANG J C, YANG Y, Study on innovation adaptive EKF for in-flight alignment of airborne POS[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(4): 1378-1388.
[7] NING X L, LI Z, YANG Y Q, et al. Analysis of ephemeris errors in autonomous celestial navigation during Mars approach phase[J]. The Journal of Navigation, 2017, 70(3): 505-526.
[8] SI F, ZHAO Y, LIN Y H. Adaptively tuning sampling weights of the unscented Kalman filter in starlight refraction navigation[J]. Optik, 2017, 148: 300-311.
[9] XIONG K, WEI C L, LIU L D. Multiple-model adaptive estimation for space surveillance with measurement uncertainty[J]. Optimal Control Applications and Methods, 2016, 37(2): 404-423.
[10] LIU W W, LIU Y C, BUCKNALL R. A robust localization method for unmanned surface vehicle (USV) navigation using fuzzy adaptive Kalman filtering[J]. IEEE Access, 2019, 7: 46071-46083.
[11] GAO X L, LUO H Y, BAO B K, et al. RL-AKF: An adaptive Kalman filter navigation algorithm based on reinforcement learning for ground vehicles[J]. Remote Sensing, 2020, 12(11): 1704.
[12] FRASER C T, ULRICH S. Adaptive extended Kalman filtering strategies for spacecraft formation relative navigation[J]. Acta Astronautica, 2021, 178: 700-721.
[13] 卞鸿巍, 金志华, 王俊璞, 等. 组合导航系统新息自适应卡尔曼滤波算法[J]. 上海交通大学学报, 2006, 40(6): 1000-1003.
[13] BIAN Hongwei, JIN Zhihua, WANG Junpu, et al. The innovation-based estimation adaptive Kalman filter algorithm for INS/GPS integrated navigation system[J]. Journal of Shanghai Jiao Tong University, 2006, 40(6): 1000-1003.
[14] HUANG B H, WANG J J, ZHANG J F, et al. Variational bayesian adaptive Kalman filter for integrated navigation with unknown process noise covariance[C]∥2022 2nd International Conference on Consumer Electronics and Computer Engineering. Guangzhou, China: IEEE, 2022: 436-443.
[15] ZHANG J, WANG S P, LI W S, et al. A multi-mode switching variational bayesian adaptive Kalman filter algorithm for the SINS/PNS/GMNS navigation system of pelagic ships[J]. Sensors (Basel, Switzerland), 2022, 22(9): 3372.
[16] ZHANG X Y, DUAN H B, LUO Q N. Levenberg-Marquardt based artificial physics method for mobile robot oscillation alleviation[J]. Science China Physics Mechanics Astronomy, 2014, 57(9): 1771-1777.
[17] DUXBURY T C, BORN G H, JERATH N. Viewing phobos and deimos for navigating mariner[J]. Journal of Spacecraft and Rockets, 1974, 11(4): 215-222.
[18] LEE D J, ALFRIEND K. Adaptive sigma point filtering for state and parameter estimation[C]∥AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Providence, Rhode Island, USA: AIAA, 2004: 1-20.
[19] BUSSE F D, HOW J P, SIMPSON J. Demonstration of adaptive extended Kalman filter for low-Earth-orbit formation estimation using CDGPS[J]. Navigation, 2003, 50(2): 79-93.
文章导航

/