材料科学与工程

反向传播神经网络联合遗传算法对复合材料模量的预测

展开
  • 1.上海交通大学 航空航天学院,上海 200240
    2.中国商用飞机有限责任公司 复合材料中心,上海 201210
    3.北京航空航天大学 材料科学与工程学院, 北京 100191
王卓鑫(1995-),女,山西省晋中市人,硕士生,从事复合材料性能的机器学习研究.

收稿日期: 2021-04-09

  网络出版日期: 2022-06-28

Prediction of Modulus of Composite Materials by BP Neural Network Optimized by Genetic Algorithm

Expand
  • 1. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Composites Centre, Commercial Aircraft Corporation of China, Ltd., Shanghai 201210, China
    3. School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2021-04-09

  Online published: 2022-06-28

摘要

为减少测试成本和缩短设计周期,基于机器学习方法对树脂基复合材料模量的预报方法进行了研究.采用一种全新预测方法——神经网络联合遗传算法(GA-ANN),将T800/环氧复合材料的强度、泊松比和失效应变作为反向传播(BP)神经网络的3个输入变量,在遗传算法(GA)中得出最优阈值和权重,并将所得数值赋给对应的网络参数,更新BP神经网络以更高的准确率预测树脂基复合材料的模量;同等条件下,用Adam算法进行预测.对比这两种方法,结果充分证明了GA-ANN的可行性.

本文引用格式

王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安 . 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022 , 56(10) : 1341 -1348 . DOI: 10.16183/j.cnki.jsjtu.2021.126

Abstract

In order to reduce the cost of testing and shorten the design cycle, this paper studies the prediction method of the modulus of resin matrix composites based on the machine learning method. Using a new prediction method — the neural network in combination with the genetic algorithm (GA-ANN), the strength, the Poisson’s ratio, and the failure strain of the T800/epoxy composite material are used as three input variables of the back propagation (BP) neural network. Then, the optimal threshold and weight are obtained in the genetic algorithm (GA), which are assigned to the corresponding network parameters, and the BP neural network is updated for higher accuracy to predict the modulus of resin matrix composites. Under the same conditions, the Adam algorithm is used to predict. A comparison of these two methods fully proves the feasibility of the GA-ANN algorithm.

参考文献

[1] 刘陈续, 于桂兰. 基于神经网络的层状周期结构能量传输谱预测[J]. 上海交通大学学报, 2021, 55(1): 88-95.
[1] LIU Chenxu, YU Guilan. Prediction of energy transmission spectrum of layered periodic structure based on neural network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 88-95.
[2] GELAYOL G, MINOO N, KHASHAYAR B, et al. A machine learning case study with limited data for prediction of carbon fiber mechanical properties[J]. Computers in Industry, 2019, 105: 123-132.
[3] ZHANG Z S, HONG Y, HOU B, et al. Accelerated discoveries of mechanical properties of graphene using machine learning and high-throughput computation[J]. Carbon, 2019, 148: 115-123.
[4] CHEN G, WANG H Y, BEZOLD A, et al. Strengths prediction of particulate reinforced metal matrix composites (PRMMCs) using direct method and artificial neural network[J]. Composite Structures, 2019, 223: 89-91.
[5] QI Z C, ZHANG N X, LIU Y, et al. Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning[J]. Composite Structures, 2019, 212: 199-206.
[6] 杨红, 程万里, 任丽丽. 高温高压蒸汽改性落叶松木材力学性能预测模型的建立[J]. 东北林业大学学报, 2016, 44(4): 77-80.
[6] YANG Hong, CHENG Wanli, REN Lili. Establishment of prediction model for mechanical properties of larch wood modified by high temperature and high pressure steam[J]. Journal of Northeast Forestry University, 2016, 44(4): 77-80.
[7] 白晓明. 基于数据挖掘的复合材料宏—细观力学模型研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[7] BAI Xiaoming. Research on macro-micromechanics model of composite materials based on data mining[D]. Harbin:Harbin Institute of Technology, 2016.
[8] 张博. 稀土基化合物的磁熵变及其机器学习研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2018.
[8] ZHANG Bo. Magnetic entropy change of rare earth-based compounds and its machine learning research[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences), 2018.
[9] QI Z C, LIU Y, CHEN W L. An approach to predict the mechanical properties of CFRP based on cross-scale simulation[J]. Composite Structures, 2018, 210: 339-347.
[10] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
[11] FU L, LI P F. The research survey of system identification method[C]//International Conference on Intelligent Human-machine Systems & Cybernetics. Hangzhou, China: IEEE Computer Society, 2013: 397-401.
[12] DING S F, SU C Y, YU J Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2): 153-162.
[13] 曾坤, 姜志侠. 基于多遗传算法的BP神经网络人脸识别[J]. 计算机技术与发展, 2021, 31(1): 77-82.
[13] ZENG Kun, JIANG Zhixia. Face recognition of BP neural network based on multiple genetic algorithms[J]. Computer Technology and Development, 2021, 31(1): 77-82.
[14] ZHANG H, LI S X, LIU X Y. Prediction of total order amount based on BP neural network optimized by genetic algorithm[C]//Proceedings of 2019 2nd International Conference on Mechanical, Electronic and Engineering Technology. Shanxi, China: Computer Science and Electronic Technology International Society, 2019: 106-111.
[15] WANG X P, CAO L M. Genetic algorithm theory, application and software implementation[M]. Xi’an: WestAnn Traffic University Press, 2002.
[16] KINGMA D, BA J. Adam: A method for stochastic optimization[DB/OL]. (2014-11-02)[2021-04-05]. https://xueshu.baidu.com/usercenter/paper/show?paperid=37a73866f09edd03830b234716447e4f.
[17] 朱攀星, 杨绍昌. X850树脂预浸料材料工艺性研究[J]. 科技展望, 2016, 26(24): 70+72.
[17] ZHU Panxing, YANG Shaochang. Research on the processability of X850 resin prepreg material[J]. Science and Technology Outlook, 2016, 26(24): 70+72.
文章导航

/