机械与动力工程

简单立方堆积床内火焰特性的试验研究

展开
  • 江苏大学 能源研究院,江苏 镇江 212013
尹智成(1997-),硕士生,现主要从事多孔介质燃烧研究.

收稿日期: 2021-08-20

  录用日期: 2021-10-08

  网络出版日期: 2022-06-21

基金资助

国家自然科学基金(91741117)

Experimental Study of Flame Characteristics in Simple Cubic Packed Beds

Expand
  • Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, China

Received date: 2021-08-20

  Accepted date: 2021-10-08

  Online published: 2022-06-21

摘要

多孔介质燃烧具有效率高和稳定性好等特点,提出一种简单立方堆积结构.该结构由氧化铝颗粒堆积床和双层碳化硅泡沫陶瓷组成,用以对其中的过滤燃烧特性开展试验研究.通过改变预混气体当量比和入口速度,研究在不同工况下的火焰可燃界限、火焰传播规律、CO排放规律和燃烧效率.研究发现:火焰的驻定和传播取决于区域温度、当量比和流速;在颗粒直径为40 mm的堆积床中,火焰易于传播且燃烧效率较高,而颗粒直径为20 mm的堆积床更有利于稳定火焰.

本文引用格式

尹智成, 王平, 姜霖松, 孙颖, 何祖强 . 简单立方堆积床内火焰特性的试验研究[J]. 上海交通大学学报, 2023 , 57(3) : 326 -334 . DOI: 10.16183/j.cnki.jsjtu.2021.317

Abstract

The combustion of porous media is characterized by high efficiency and good stability. A simple cubic packed structure consisting of an alumina particle packed bed and double-layer silicon carbide foam ceramics was proposed to study the filtration combustion characteristics of the structure. By changing the premixed gas equivalent ratio and inlet velocity, the flammability limit of flame, flame propagation law, CO emission law, and combustion efficiency under different working conditions were studied. It is found that the stabilization and propagation of the flame depend on the regional temperature, the equivalent ratio, and the velocity. In the bed with a particle diameter of 40 mm, the flame is easy to spread and the combustion efficiency is high, while in the bed with a particle diameter of 20 mm, the flame is more stable.

参考文献

[1] MOHAMAD A A. Combustion in porous media: Fundamentals and applications[M]// Transport phenomena in porous media III. Amsterdam: Elsevier, 2005: 287-304.
[2] BANERJEE A, PAUL D. Developments and applications of porous medium combustion: A recent review[J]. Energy, 2021, 221: 119868.
[3] KOTANI Y, TAKENO T. An experimental study on stability and combustion characteristics of an excess enthalpy flame[J]. Symposium (International) on Combustion, 1982, 19(1): 1503-1509.
[4] BUBNOVICH V, TOLEDO M, HENRíQUEZ L, et al. Flame stabilization between two beds of alumina balls in a porous burner[J]. Applied Thermal Engineering, 2010, 30(2/3): 92-95.
[5] 姜霖松, 刘宏升, 吴丹, 等. 随机堆积床内甲烷/空气预混燃烧过程的数值模拟[J]. 东北大学学报(自然科学版), 2019, 40(7): 962-967.
[5] JIANG Linsong, LIU Hongsheng, WU Dan, et al. Numerical simulation of methane-air premixed combustion process in a randomly packed bed[J]. Journal of Northeastern University (Natural Science), 2019, 40(7): 962-967.
[6] 杨剑, 曾敏, 闫晓, 等. 三维颗粒有序堆积多孔介质内强制对流换热数值研究[J]. 核动力工程, 2010, 31(Sup.1): 103-108.
[6] YANG Jian, ZENG Min, YAN Xiao, et al. Three-dimensional numerical study on forced convection heat transfer in structured packed porous media[J]. Nuclear Power Engineering, 2010, 31(Sup.1): 103-108.
[7] CALIS H P A, NIJENHUIS J, PAIKERT B C, et al. CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing[J]. Chemical Engineering Science, 2001, 56(4): 1713-1720.
[8] 李楠, 史俊瑞, 杨凌, 等. 稀释甲烷/氧气扩散过滤燃烧特性的实验研究[J]. 热能动力工程, 2019, 34(6): 122-127.
[8] LI Nan, SHI Junrui, YANG Ling, et al. Experimental study on diffusion filtration combustion cha-racteristics of diluted methane/oxygen[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(6): 122-127.
[9] 王恩宇, 唐世乾, 康淑慧, 等. 超低热值燃气燃烧及CO排放控制研究[J]. 热科学与技术, 2020, 19(4): 374-380.
[9] WANG Enyu, TANG Shiqian, KANG Shuhui, et al. Study on combustion and CO emission control of ultra-low calorific gas[J]. Journal of Thermal Science and Technology, 2020, 19(4): 374-380.
[10] 岳猛, 解茂昭, 史俊瑞, 等. 有序堆积床内预混气体燃烧特性试验研究[J]. 热科学与技术, 2021, 20(1): 48-53.
[10] YUE Meng, XIE Maozhao, SHI Junrui, et al. Experimental study on premixed gases combustion cha-racteristics in a structured packing bed[J]. Journal of Thermal Science and Technology, 2021, 20(1): 48-53.
[11] 何祖强, 王平, Meenatchidevi Murugesan, 等. 新型双旋流燃烧室热声振荡的实验研究[J]. 实验流体力学, 2021, 35(1): 44-52.
[11] HE Zuqiang, WANG Ping, MURUGESAN M, et al. Experimental investigation on thermoacoustic oscillation of a new dual-swirl combustor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 44-52.
[12] KENNEDY L A, SAVELIEV A V, BINGUE J P, et al. Filtration combustion of a methane wave in air for oxygen-enriched and oxygen-depleted environments[J]. Proceedings of the Combustion Institute, 2002, 29(1): 835-841.
[13] 刘宏升, 王松祥, 刘林, 等. 电预热多孔介质燃烧器内柴油燃烧的实验研究[J]. 上海交通大学学报, 2019, 53(10): 1203-1209.
[13] LIU Hongsheng, WANG Songxiang, LIU Lin, et al. Experimental study on combustion of diesel oil in an electric preheating porous medium burner[J]. Journal of Shanghai Jiao Tong University, 2019, 53(10): 1203-1209.
[14] 黄杰, 许学成, 陈元元, 等. 多孔介质燃烧器系统设计及实验研究[J]. 材料与冶金学报, 2020, 19(1): 71-77.
[14] HUANG Jie, XU Xuecheng, CHEN Yuanyuan, et al. Design and experimental study on porous media burner system[J]. Journal of Materials and Metallurgy, 2020, 19(1): 71-77.
[15] 周明熙. 铁矿石烧结过程的床层多孔结构及火焰锋面阻力特性的研究[D]. 杭州: 浙江大学, 2018.
[15] ZHOU Mingxi. Fundamental investigation of the characteristics of bed porous structure and the resistance of flame front in iron ore sintering[D]. Hangzhou: Zhejiang University, 2018.
[16] 黄新章, 张秀丽, 史俊瑞, 等. 甲烷/空气在多孔介质小球填充床表面扩散燃烧的试验研究[J]. 沈阳工程学院学报(自然科学版), 2014, 10(1): 21-23.
[16] HUANG Xinzhang, ZHANG Xiuli, SHI Junrui, et al. Experimental research on CH4/air diffusion combustion on the upper surface of porous medium packed beds[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2014, 10(1): 21-23.
[17] LIU H B, ZHAO C Y. Effect of radial porosity oscillation on the thermal performance of packed bed latent heat storage[J]. Engineering, 2021, 7(4): 515-525.
文章导航

/