聚酰亚胺的冷风微量润滑辅助切削工艺
收稿日期: 2021-05-21
网络出版日期: 2021-09-22
基金资助
上海航天科技创新基金(SAST2019-089)
Cryogenic Minimal Quantity Lubrication Assisted Cutting Process for Polyimide Materials
Received date: 2021-05-21
Online published: 2021-09-22
研究了冷风微量润滑辅助的多孔聚酰亚胺材料切削加工性能,并探讨了切削加工工艺参数对多孔材料切削加工效果(切削力、表面加工质量及含油率)的影响规律.结果表明,相较于干切削和低温冷风切削,冷风微量润滑切削的切削温度及已加工表面粗糙度最低,多孔流道损伤最小.切削深度和进给量分别是对铣削力和表面粗糙度影响最大的因素.切屑毛边、撕裂等缺陷是导致表面粗糙度增大的主要因素.工件表面存在的拉丝、微裂纹、堆叠及微小碎屑附着等缺陷是材料含油率及输油率降低的根本原因.正交实验获得冷风微量润滑辅助条件下多孔聚酰亚胺材料最优加工参数:切削速度vc=(85±5) mm/min,进给量fz=(0.28±0.02) mm/r,切削深度ap=(0.8±0.1) mm.冷风微量润滑切削技术可以实现多孔聚酰亚胺材料的低损伤加工,获得高含油率及高输油率的保持架产品.
曹拯, 雷学林, 张航, 蔡晓江 . 聚酰亚胺的冷风微量润滑辅助切削工艺[J]. 上海交通大学学报, 2022 , 56(6) : 784 -793 . DOI: 10.16183/j.cnki.jsjtu.2021.173
The cutting performance of the porous polyimide material assisted by cold air trace lubrication was investigated, and the influence law of cutting process parameters on the cutting effect (cutting force, surface finish quality, and oil content) of the porous material was explored. The results show that compared with dry cutting and low-temperature cold air cutting, the cutting temperature and the machined surface roughness of cold air micro-lubrication cutting are the lowest, and the damage to the porous runner is the smallest. The depth of cut and the feed volume are the factors that have the greatest influence on milling force and surface roughness, respectively. Defects such as chip burrs and tears are the main factors that lead to the increase in surface roughness. The existence of drawing, micro-crack, stacking, and tiny debris on the workpiece surface are the main causes for the decrease in the oil content and oil delivery rate of the material. The optimal machining parameters of the porous polyimide material in the orthogonal experiment with the aid of cold air trace lubrication are vc=(100±2) mm/min, fz=(0.3±0.01) mm/r, ap=(0.8±0.1) mm (vc is the cutting speed, fz is the feeding rate, and ap is the cutting depth). With the assist of the cryogenic minimal quantity lubrication technology, the low damage processing, high oil content, and high oil delivery rate of cage products can be obtained.
[1] | JIANG X, BIN Y, MATSUO M. Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization[J]. Polymer, 2005, 46(18): 7418-7424. |
[2] | WANG J, ZHOU W, LUO F, et al. Mechanical performance of nanosilica filled quartz fiber/polyimide composites at room and elevated temperatures[J]. Journal of Materials Science, 2017, 52(20): 12207-12220. |
[3] | FUSARO R. Lubrication of space systems[J]. Lubrication Engineering, 1994, 51(3): 1-28. |
[4] | RUAN H, ZHANG Y, LI S, et al. Effect of temperature on the friction and wear performance of porous oil-containing polyimide[J]. Tribology International, 2021, 157: 106891. |
[5] | 袁松梅, 韩文亮, 朱光远, 等. 绿色切削微量润滑增效技术研究进展[J]. 机械工程学报, 2019, 55(5): 175-185. |
[5] | YUAN Songmei, HAN Wenliang, ZHU Guangyuan. Recent progress on the efficiency increasing methods of minimum quantity lubrication technology in green cutting[J]. Journal of Mechanical Engineering, 2019, 55(5): 175-185. |
[6] | 袁松梅, 刘思, 严鲁涛. 低温微量润滑技术在几种典型难加工材料加工中的应用[J]. 航空制造技术, 2011(14): 45-47. |
[6] | YUAN Songmei, LIU Si, YAN Lutao. Application of CA-MQL technology to several typical difficult-to-machine material machining[J]. Aeronautical Manufacturing Technology, 2011(14): 45-47. |
[7] | 郑祝堂. 论绿色切削加工技术[J]. 新疆石油学院学报, 2001, 13(2): 63-66. |
[7] | ZHENG Zhutang. Green machining technology in metal cutting[J]. Journal of Xinjiang Petroleum Institute, 2001, 13(2): 63-66. |
[8] | THEW M T, SMYTH I C. Development and performance of oil-water hydrocyclone separators: A review[M]. London: Institute of Materials, Minerals and Mining, 1998. |
[9] | 袁松梅, 朱光远, 王莉. 绿色切削微量润滑技术润滑剂特性研究进展[J]. 机械工程学报, 2017, 53(17): 131-140. |
[9] | YUAN Songmei, ZHU Guangyuan, WANG Li. Recent progress on lubricant characteristics of minimum quantity lubrication (MQL) technology in green cutting[J]. Journal of Mechanical Engineering, 2017, 53(17): 131-140. |
[10] | SHARMA A K, TIWARI A K, DIXIT A R. Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review[J]. Journal of Cleaner Production, 2016, 127: 1-18. |
[11] | WANG Y, LI C, ZHANG Y, et al. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils[J]. Journal of Cleaner Production, 2016, 127: 487-499. |
[12] | SU Y, GONG L, LI B, et al. Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning[J]. The International Journal of Advanced Manufacturing Technology, 2015, 83(9/10/11/12): 2083-2089. |
[13] | WANG Y, LI C, ZHANG Y, et al. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids[J]. Tribology International, 2016, 99: 198-210. |
[14] | 贺爱东. CMQL切削机理及加工表面残余应力调控研究[D]. 广东: 华南理工大学, 2018. |
[14] | HE Aidong. Investigation on processing mechanism and control of residual stress in CMQL machining[D]. Guangdong: South China University of Technology, 2018. |
[15] | 陈建升, 范琳, 陶志强, 等. 短切石英纤维/聚酰亚胺复合材料的制备与性能[J]. 复合材料学报, 2006, 23(5): 79-83. |
[15] | CHEN Jiansheng, FAN Lin, TAO Zhiqiang, et al. Preparation and properties of chopped quartz fiber/PMR polyimide composites[J]. Acta Materiae Compositae Sinica, 2006, 23(5): 79-83. |
[16] | AZMI A I, LIN R J T, BHATTACHARYYA D. Machinability study of glass fibre-reinforced polymer composites during end milling[J]. The International Journal of Advanced Manufacturing Technology, 2012, 64(1/2/3/4): 247-61. |
[17] | WANG F, LIU J, SHU Q. Optimization of cryogenic milling parameters for AFRP[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9/10/11/12): 3243-3252. |
[18] | WANG F, BIN Z, WANG Y. Milling force of quartz fiber-reinforced polyimide composite based on cryogenic cooling[J]. International Journal of Advanced Manufacturing Technology, 2019, 104(5/6/7/8): 2363-2375. |
[19] | NOR KHAIRUSSHIMA M K, CHE HASSAN C H, JAHARAH A G, et al. Effect of chilled air on tool wear and workpiece quality during milling of carbon fibre-reinforced plastic[J]. Wear, 2013, 302(1): 1113-1123. |
[20] | EL-TAWEEL T A, ABDEL-MAABOUD A M, AZZAM B S, et al. Parametric studies on the CO2 laser cutting of Kevlar-49 composite[J]. The International Journal of Advanced Manufacturing Technology, 2008, 40(9/10): 907-917. |
[21] | SHANMUGAM D K, CHEN F L, SIORES E, et al. Comparative study of jetting machining technologies over laser machining technology for cutting composite materials[J]. Composite Structures, 2002, 57(1): 289-296. |
[22] | DHAKAL H N, ISMAIL S O, OJO S O, et al. Abrasive water jet drilling of advanced sustainable bio-fibre-reinforced polymer/hybrid composites: A comprehensive analysis of machining-induced damage responses[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(9): 2833-2847. |
[23] | 魏佳平, 孙小波, 谢鹏飞, 等. 成形工艺对多孔聚酰亚胺复合材料性能的影响[J]. 轴承, 2013(11): 33-35. |
[23] | WEI Jiaping, SUN Xiaobo, XIE Pengfei, et al. Influence of forming process on the properties of porous polyimide composites[J]. Bearing, 2013(11): 33-35. |
[24] | 李如春. 浅谈工程塑料的切削加工[J]. 轻纺工业与技术, 2020, 49(9): 150-151. |
[24] | LI Ruchun. On cutting of engineering plastics[J]. Light and Textile Industry and Technology, 2020, 49(9): 150-151. |
[25] | 杨永喜. 聚酰亚胺基多孔含油材料的制备及改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
[25] | YANG Yongxi. Research on preparation and modification of polyimide based porous oil-bearing material[D]. Harbin: Harbin Institute of Technology, 2017. |
[26] | 李瑞芬. 塑料的机械加工[M]. 北京: 化学工业出版社, 2014. |
[26] | LI Ruifen. Mechanical processing of plastics[M]. Beijing: Chemical Industry Press, 2014. |
[27] | 邓四二, 谢鹏飞, 杨海生, 等. 高速角接触球轴承保持架柔体动力学分析[J]. 兵工学报, 2011, 32(5): 625-31. |
[27] | DENG Sier, XIE Pengfei, YANG Haisheng, et al. Flexible-body dynamics analysis on cage of high-speed angular contact ball bearing[J]. Acta Armamentarii, 2011, 32(5): 625-31. |
/
〈 |
|
〉 |