收稿日期: 2020-07-08
网络出版日期: 2021-09-22
基金资助
国家自然科学基金(51809154);湖北省教育厅科学技术研究项目(Q20181207);湖北省高等学校优秀中青年科技创新团队计划(T2020005);湖北省水电工程施工与管理重点实验室开放基金(2019KSD04)
Element-Free Galerkin Scaled Boundary Method Based on Moving Kriging Interpolation for Steady Heat Conduction Analysis with Temperatures on Side-Faces
Received date: 2020-07-08
Online published: 2021-09-22
采用基于滑动Kriging插值的无单元伽辽金比例边界法(EFG-SBM)求解侧边界有温度载荷的稳态热传导问题,该方法通过无单元伽辽金法(EFG)和滑动Kriging插值离散环向边界.由于滑动Kriging插值形函数具备Kronecker delta函数插值特性,克服了移动最小二乘逼近难以直接准确施加本质边界条件的不足.作为一种新型的边界型无网格法,EFG-SBM兼有EFG法和比例边界有限元法(SBFEM)的优点.该方法继承了SBFEM的半解析特性,通过引入比例边界坐标系,可将偏微分控制方程环向离散,径向上解析求解.与传统的SBFEM相比,环向边界通过节点进行离散,前处理和后处理简便.通过数值算例可以看出,相比基于拉格朗日多项式的SBFEM,基于滑动Kriging插值的EFG-SBM计算精度更高.相比有限元法(FEM),该方法能更好地反映尖角处热奇异性以及无限域温度分布状态.
关键词: 无单元伽辽金比例边界法; 滑动Kriging插值; 热传导; 比例边界有限元法
王峰, 陈佳莉, 陈灯红, 范勇, 李志远, 何卫平 . 基于滑动Kriging插值的EFG-SBM求解含侧边界的稳态热传导问题[J]. 上海交通大学学报, 2021 , 55(11) : 1483 -1492 . DOI: 10.16183/j.cnki.jsjtu.2020.215
The element-free Galerkin scaled boundary method (EFG-SBM) based on moving Kriging (MK) interpolation is used to solve steady heat conduction problems with temperature loads on side-faces, in which the circumferential boundary is discretized based on MK interpolation and the element-free Galerkin (EFG) method. As the shape functions constructed from the MK interpolation possess the Kronecker delta interpolation property, the MK shape functions overcome the shortcomings of moving least squares (MLS) approximation which is difficult to impose essential boundary conditions directly and accurately. As a new boundary-type meshless method, EFG-SBM has advantages of the EFG and scaled boundary finite element method (SBFEM). This method inherits the semi-analytical property of SBFEM by introducing the scaled boundary coordinate system, in which the governing differential equations are weakened in the circumferential direction and can be solved analytically in the radial direction. Unlike the traditional SBFEM, the preprocessing and postprocessing processes of EFG-SBM are simplified since only the nodal data structure is required in the circumferential direction. Numerical examples show that the EFG-SBM based on MK interpolation can obtain a higher accuracy than the SBFEM based on Lagrange polynomials. Compared with the finite element method (FEM), this method can better characterize the thermal singularity at the sharp corner and the temperature distribution of the infinite region.
[1] | 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006. |
[1] | YANG Shiming, TAO Wenquan. Heat transfer[M]. Beijing: Higher Education Press, 2006. |
[2] | RAITHBY G D, CHUI E H. A finite-volume method for predicting a radiant heat transfer in enclosures with participating media[J]. Journal of Heat Transfer, 1990, 112(2):415-423. |
[3] | KANJANAKIJKASEM W. A finite element method for prediction of unknown boundary conditions in two-dimensional steady-state heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2015, 88:891-901. |
[4] | 徐刚, 陈静, 王树齐, 等. 无奇异边界元法精度分析[J]. 上海交通大学学报, 2018, 52(7):867-872. |
[4] | XU Gang, CHEN Jing, WANG Shuqi, et al. The numerical accuracy of the desingularized boundary integral equation method[J]. Journal of Shanghai Jiao Tong University, 2018, 52(7):867-872. |
[5] | 秦红星, 杨杰. 基于无网格局部彼得罗夫伽辽金方法的点采样曲面滤波[J]. 上海交通大学学报, 2012, 46(4):584-590. |
[5] | QIN Hongxing, YANG Jie. Point-based surface filtering based on meshless local Petrov-Galerkin method[J]. Journal of Shanghai Jiao Tong University, 2012, 46(4):584-590. |
[6] | 王峰, 郑保敬, 林皋, 等. 热弹性动力学耦合问题的插值型移动最小二乘无网格法研究[J]. 工程力学, 2019, 36(4):37-43. |
[6] | WANG Feng, ZHENG Baojing, LIN Gao, et al. Meshless method based on interpolating moving least square shape functions for dynamic coupled thermoelasticity analysis[J]. Engineering Mechanics, 2019, 36(4):37-43. |
[7] | CHEN W H, TING K. Finite element analysis of transient thermoelastic fracture problems[J]. Computational Mechanics, 1986, 86:1063-1069. |
[8] | DE HAN H, HUANG Z Y. Exact and approximating boundary conditions for the parabolic problems on unbounded domains[J]. Computers & Mathematics With Applications, 2002, 44(5/6):655-666. |
[9] | SONG C M, WOLF J P. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 147(3/4):329-355. |
[10] | 徐斌, 徐满清, 王建华. 饱和土体固结3D比例边界有限元法分析[J]. 上海交通大学学报, 2016, 50(1):8-16. |
[10] | XU Bin, XU Manqing, WANG Jianhua. Modelling of saturated soil dynamic coupled consolidation problems using three-dimensional scaled boundary finite element method[J]. Journal of Shanghai Jiao Tong University, 2016, 50(1):8-16. |
[11] | BIRK C, SONG C. A continued-fraction approach for transient diffusion in unbounded medium[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33/34/35/36):2576-2590. |
[12] | VU T H, DEEKS A J. Use of higher-order shape functions in the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering, 2006, 65(10):1714-1733. |
[13] | 庞林, 林皋, 钟红. 比例边界等几何方法在断裂力学中的应用[J]. 工程力学, 2016, 33(7):7-14. |
[13] | PANG Lin, LIN Gao, ZHONG Hong. Scaled boundary isogeomtric analys applied to fracture mechanics problem[J]. Engineering Mechanics, 2016, 33(7):7-14. |
[14] | LIU G R, GU Y T. An introduction to meshfree methods and their programming[M]. Berlin/Heidelberg: Springer-Verlag, 2005. |
[15] | 马文涛, 许艳, 马海龙. 修正的内部基扩充无网格法求解多裂纹应力强度因子[J]. 工程力学, 2015, 32(10):18-24. |
[15] | MA Wentao, XU Yan, MA Hailong. Solving stress intensity factors of multiple cracks by using a modified intrinsic basis enriched meshless method[J]. Engineering Mechanics, 2015, 32(10):18-24. |
[16] | BELYTSCHKO T, LU Y Y, GU L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2):229-256. |
[17] | 吴学红, 李增耀, 申胜平, 等. 不规则区域热传导问题无网格Petrov-Galerkin方法的数值模拟[J]. 工程热物理学报, 2009, 30(8):1350-1352. |
[17] | WU Xuehong, LI Zengyao, SHEN Shengping, et al. Numerical simulation of heat conduction problems on irregular domain by using MLPG method[J]. Journal of Engineering Thermophysics, 2009, 30(8):1350-1352. |
[18] | LI Y, LIU G R. An element-free smoothed radial point interpolation method (EFS-RPIM) for 2D and 3D solid mechanics problems[J]. Computers & Mathematics With Applications, 2019, 77(2):441-465. |
[19] | HE Y Q, YANG H T, DEEKS A J. An element-free Galerkin scaled boundary method for steady-state heat transfer problems[J]. Numerical Heat Transfer, Part B: Fundamentals, 2013, 64(3):199-217. |
[20] | LI Q H, CHEN S S, LUO X M. Steady heat conduction analyses using an interpolating element-free Galerkin scaled boundary method[J]. Applied Mathematics and Computation, 2017, 300:103-115. |
[21] | 王峰, 周宜红, 林皋, 等. 二维稳态热传导问题改进的EFG-SBM法[J]. 工程热物理学报, 2017, 38(6):1288-1299. |
[21] | WANG Feng, ZHOU Yihong, LIN Gao, et al. Improved element-free Galerkin scaled boundary method for two-dimensional steady heat transfer problems[J]. Journal of Engineering Thermophysics, 2017, 38(6):1288-1299. |
[22] | GU L. Moving Kriging interpolation and element-free Galerkin method[J]. International Journal for Numerical Methods in Engineering, 2003, 56(1):1-11. |
[23] | DAI B D, ZHENG B J, LIANG Q X, et al. Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method[J]. Applied Mathematics and Computation, 2013, 219(19):10044-10052. |
[24] | CHEN S S, LI Q H, LIU Y H. A scaled boundary node method applied to two-dimensional crack problems[J]. Chinese Physics B, 2012, 21(11):110207. |
[25] | 王峰. 改进的无网格法求解温度场和温度应力及其在水工结构分析中的应用[D]. 大连: 大连理工大学, 2015. |
[25] | WANG Feng. Improved meshless method for the solution of temperature field and thermal stress and its application to hydraulic structure analysis[D]. Dalian: Dalian University of Technology, 2015. |
[26] | 王峰, 林皋, 李洋波, 等. 非均质材料热传导问题的扩展无单元伽辽金法[J]. 华中科技大学学报(自然科学版) , 2019, 47(12):116-120. |
[26] | WANG Feng, LIN Gao, LI Yangbo, et al. Extended element-free Galerkin method for steady heat conduction problem of inhomogenous material[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition) , 2019, 47(12):116-120. |
[27] | ZHENG B J, DAI B D. A meshless local moving Kriging method for two-dimensional solids[J]. Applied Mathematics and Computation, 2011, 218(2):563-573. |
[28] | DEEKS A J. Prescribed side-face displacements in the scaled boundary finite-element method[J]. Computers & Structures, 2004, 82(15/16):1153-1165. |
[29] | 李鹏. 热流和渗流问题的等几何比例边界有限元方法及其在大坝工程中的应用[D]. 大连: 大连理工大学, 2018. |
[29] | LI Peng. Isogeometric scaled boundary finite element method in heat transfer and seepage flow problems and the application to dams[D]. Dalian: Dalian University of Technology, 2018. |
[30] | LI F Z, REN P H. A novel solution for heat conduction problems by extending scaled boundary finite element method[J]. International Journal of Heat and Mass Transfer, 2016, 95:678-688. |
/
〈 |
|
〉 |