变汽液比条件下高速燃油离心泵非定常特性分析研究
收稿日期: 2021-03-22
网络出版日期: 2021-09-22
基金资助
陕西省自然科学基金(2020JQ-335);国家重大专项(2017-V-0013-0065)
Transient Characteristics of a High-Speed Aero-Fuel Centrifugal Pump in Variable Gas-Liquid Ratio Conditions
Received date: 2021-03-22
Online published: 2021-09-22
为了明确高速燃油离心泵在汽液比变化下流场的非定常特性,以设计流量和小流量工况为例进行内流场数值模拟,重点分析叶轮流道内的非定常流动特点及压力脉动时频特性.给出汽液比与进口压力的映射关系以确定仿真边界,并对网格模型、仿真步长进行相关性检验.将仿真与试验结果对比,以验证仿真方法的有效性.随后,基于压力等值线和湍动能等分布结果分析其非定常流动特点,并利用快速Fourier变换对叶轮进口、出口的压力脉动进行时频特性转换.研究结果表明,在燃油饱和状态条件下,叶轮流道内的流动相对稳定,压力幅值主频为转频.随着汽液比的增加,叶轮进口产生了低压区且面积明显扩大,叶轮出口出现了不同程度的尾迹流,相同区域内的湍动能耗散率同样表现最为强烈.另一方面,随着汽液比的增加,叶轮进口压力逐渐降低,在设计流量下,微小的压力幅值主频为转频,而小流量下出现了其他倍频.同时,叶轮出口的尾迹流并未严重影响各监测点的压力幅值主频,此处压力幅值主频仍为转频.
李嘉, 李华聪, 王玥 . 变汽液比条件下高速燃油离心泵非定常特性分析研究[J]. 上海交通大学学报, 2022 , 56(5) : 622 -634 . DOI: 10.16183/j.cnki.jsjtu.2021.092
To clarify the transient flow characteristics of a high-speed aero-fuel centrifugal pump in variable gas-liquid ratio conditions, numerical simulations for the internal flow field in design flow rate and small flow rate conditions are conducted, focusing on the transient flow characteristics and time-frequency performance of pressure pulsation in the impeller channel. The conversion relationship between gas-liquid ratio and inlet pressure is given to determine the inlet simulation boundary, and then the grid model and length of time step are checked for relevant test. The prediction results between simulations and test are given to verify the effectiveness of the adopted simulation method. Then, the transient characteristics are analyzed through the results of pressure contour and turbulent kinetic energy, and the time-frequency performances of pressure pulsations at impeller inlet and outlet are conducted by fast Fourier transform(FFT). The results show that the flow in the impeller channel is relatively stable under the fuel saturation condition, and the main frequency of pressure amplitude is rotation frequency. With the increase of gas-liquid ratio, the impeller inlet produces a low-pressure zone whose area is significantly enlarged. Besides, a certain wake flow zone is generated at impeller outlet, where the turbulent energy dissipation rate is also demonstrated to be the strongest at these zones. Moreover, the inlet pressure is generally decreased with the increase of gas-liquid ratio, and the main frequency at the design flow rate is rotation frequency, but other frequency multiplication appears at the small flow rate. Meanwhile, the wake flow at the impeller outlet does not seriously affect the main frequencies at the monitoring points, where the main frequency is still rotation frequency.
[1] | 刘尚勤. 离心泵用作航空发动机主燃油泵研究[J]. 航空发动机, 2006, 32(2): 43-45. |
[1] | LIU Shangqin. Investigation of centrifugal pump used as aeroengine main fuel pump[J]. Aeroengine, 2006, 32(2): 43-45. |
[2] | 樊思齐, 李华聪, 樊丁. 航空发动机控制[M]. 西安: 西北工业大学出版社, 2008: 24-27. |
[2] | FAN Siqi, LI Huacong, FAN Ding, et al[M]. Xi'an: Northwestern Polytechnical University Press, 2008: 24-27. |
[3] | 刘显为, 李华聪, 史新兴, 等. 基于粒子群算法的航空离心泵复合叶轮优化设计研究[J]. 推进技术, 2019, 40(8): 1743-1751. |
[3] | LIU Xianwei, LI Huacong, SHI Xinxing, et al. Optimization design of composite impeller of aero-centrifugal pump based on particle swarm optimization[J]. Journal of Propulsion Technology, 2019, 40(8): 1743-1751. |
[4] | 杨军虎, 边中, 钟春林, 等. 基于水力损失计算的离心泵叶轮叶片出口安放角选择方法[J]. 西华大学学报(自然科学版), 2016, 35(3): 89-92. |
[4] | YANG Junhu, BIAN Zhong, ZHONG Chunlin, et al. Method for selecting centrifugal pump impeller outlet angle based on calculation of centrifugal pump impeller’s hydraulic loss[J]. Journal of Xihua University (Natural Science Edition), 2016, 35(3): 89-92. |
[5] | 李嘉, 李华聪, 王淑红, 等. 多级导流诱导轮与叶轮一体型线优化[J]. 北京航空航天大学学报, 2016, 42(5): 953-960. |
[5] | LI Jia, LI Huacong, WANG Shuhong, et al. Profile optimization of multi-diversion combination inducer and impeller[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 953-960. |
[6] | 肖红亮, 李华聪, 李嘉, 等. 基于QPSO混合算法的变循环发动机建模方法[J]. 北京航空航天大学学报, 2018, 44(2): 305-315. |
[6] | XIAO Hongliang, LI Huacong, LI Jia, et al. Modeling method of variable cycle engine based on QPSO hybrid algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 305-315. |
[7] | SAFIKHANI H, KHALKHALI A, FARAJPOOR M. Pareto based multi-objective optimization of centrifugal pumps using CFD, neural networks and genetic algorithms[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(1): 37-48. |
[8] | 张兴, 张文明, 廖姣. 叶片数对低比转速离心泵性能影响分析[J]. 热能动力工程, 2017, 32(8): 107-110. |
[8] | ZHANG Xing, ZHANG Wenming, LIAO Jiao. Impact of blade number on the performance of low specific speed centrifugal pump[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(8): 107-110. |
[9] | 万丽佳, 宋文武, 李金琼. 叶片包角对低比转速离心泵固液两相非定常流动的影响[J]. 热能动力工程, 2019, 34(7): 37-44. |
[9] | WAN Lijia, SONG Wenwu, LI Jinqiong. Effect of blade packet angle on unsteady flow of solid-liquid two-phase of centrifugal pump with low ratio speed[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(7): 37-44. |
[10] | 崔宝玲, 陈杰, 李晓俊, 等. 高速诱导轮离心泵内空化发展可视化实验与数值模拟[J]. 农业机械学报, 2018, 49(4): 148-155. |
[10] | CUI Baoling, CHEN Jie, LI Xiaojun, et al. Experiment and numerical simulation of cavitation evolution in high speed centrifugal pump with inducer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 148-155. |
[11] | ZHENG L L, CHEN X P, ZHANG W, et al. Investigation on characteristics of pressure fluctuation in a centrifugal pump with clearance flow[J]. Journal of Mechanical Science and Technology, 2020, 34(9): 3657-3666. |
[12] | 周强, 李宏坤, 仲作文, 等. 离心泵导叶流道进口处压力脉动研究[J]. 工程热物理学报, 2020, 41(7): 1679-1684. |
[12] | ZHOU Qiang, LI Hongkun, ZHONG Zuowen, et al. Investigation on pressure pulsation at the inlet of guide vane in a centrifugal pump[J]. Journal of Engineering Thermophysics, 2020, 41(7): 1679-1684. |
[13] | 裴奕凡. 弯管入流对离心泵压力脉动特性的影响研究[D]. 西安: 西安理工大学, 2019: 20-32. |
[13] | PEI Yifan. Study on the influence of bend inflow pressure pulsation characteristics of centrifugal pump[D]. Xi’an: Xi’an University of Technology, 2019: 20-32. |
[14] | 袁建平, 王振清, 付燕霞, 等. 中比转速离心泵进口回流特性研究[J]. 振动与冲击, 2020, 39(22): 8-15. |
[14] | YUAN Jianping, WANG Zhenqing, FU Yanxia, et al. Experiments on the backflow characteristics at the inlet of a moderate-speed centrifugal pump[J]. Journal of Vibration and Shock, 2020, 39(22): 8-15. |
[15] | 敏政, 朱月龙, 黎义斌, 等. 基于DDES的离心泵蜗壳内部涡动力学研究[J]. 西华大学学报(自然科学版), 2019, 38(4): 16-21. |
[15] | MIN Zheng, ZHU Yuelong, LI Yibin, et al. Study on internal vorticity dynamics of centrifugal pump volute based on DDES[J]. Journal of Xihua University (Natural Science Edition), 2019, 38(4): 16-21. |
[16] | 杨红红. 离心泵导叶内失速流动特性及其产生机理研究[D]. 西安: 西安理工大学, 2019: 3-35. |
[16] | YANG Honghong. Study on stall flow characteristics and generation mechanism in diffuser vane of centrifugal pump[D]. Xi’an: Xi’an University of Technology, 2019: 3-35. |
[17] | 伍柯霖, 钱全, 邢允, 等. 基于时频分析的离心泵空化状态表征研究[J]. 工程热物理学报, 2021, 42(1): 106-114. |
[17] | WU Kelin, QIAN Quan, XING Yun, et al. Research on cavitation characterization of centrifugal pumps based on time-frequency analysis[J]. Journal of Engineering Thermophysics, 2021, 42(1): 106-114. |
[18] | 王东伟, 刘在伦, 曾继来. 离心泵非定常空化流场及空泡特征分析[J]. 流体机械, 2020, 48(12): 28-35. |
[18] | WANG Dongwei, LIU Zailun, ZENG Jilai. Analysis of unsteady cavitation flow field and cavitation bubble characteristics for a centrifugal pump[J]. Fluid Machinery, 2020, 48(12): 28-35. |
[19] | 李嘉, 李华聪, 符江锋, 等. 带引射器的多级导流叶轮航空燃油离心泵数值模拟[J]. 航空动力学报, 2015, 30(8): 1909-1917. |
[19] | LI Jia, LI Huacong, FU Jiangfeng, et al. Numerical simulation of multi-diversion aero fuel centrifugal pump with ejector[J]. Journal of Aerospace Power, 2015, 30(8): 1909-1917. |
[20] | 董玮, 何庆南, 梁武科, 等. 双蜗壳离心泵泵腔轴向宽度与流动特性的关系[J]. 西北工业大学学报, 2020, 38(6): 1322-1329. |
[20] | DONG Wei, HE Qingnan, LIANG Wuke, et al. Relationship between axial width and flow characteristics of pump chamber in double volute centrifugal pump[J]. Journal of Northwestern Polytechnical University, 2020, 38(6): 1322-1329. |
/
〈 |
|
〉 |