小通道内制冷剂两相流动摩擦压降关联式分析

展开
  • 1.上海交通大学 制冷与低温工程研究所, 上海 200240
    2.上海海事大学 商船学院, 上海 201306
刘勖诚(1997-),男,江西省吉安市人,硕士生,主要研究方向为换热器.

收稿日期: 2020-06-01

  网络出版日期: 2021-06-08

基金资助

国家自然科学基金(51976114);中国博士后科学基金(2019M650084)

Analysis of Frictional Pressure Drop Correlations of Refrigerant Two-Phase Flow in Mini-Channel

Expand
  • 1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

Received date: 2020-06-01

  Online published: 2021-06-08

摘要

针对小通道内两相流动摩擦压降的关联式进行了全面分析,描述关联式之间的继承发展关系,并指出不同关联式之间的创新之处.为了评估各种关联式在小通道中的通用性和精度,建立了一个大型摩擦压降数据库,此数据库在蒸发和冷凝/绝热工况下分别有 1302 和 1576 个数据点.对26种关联式分工况进行评估分析,并发现Sempértegui-Tapia和Kim关联式分别在蒸发工况、冷凝/绝热工况下具有最佳的预测能力,最后提出了关于关联式改进的建议.

本文引用格式

刘勖诚, 谷波, 曾炜杰, 杜仲星, 田镇 . 小通道内制冷剂两相流动摩擦压降关联式分析[J]. 上海交通大学学报, 2021 , 55(9) : 1095 -1107 . DOI: 10.16183/j.cnki.jsjtu.2020.159

Abstract

This paper presents a comprehensive analysis of the frictional pressure drop correlations in two-phase flow in mini-channel, describes the relationship of inheritance and development between the correlations, and points out the innovation between different correlations. In order to evaluate the universality and precision of various correlations, it establishes a large frictional pressure drop database, which is specialized for mini-channels. This database includes 1302 and 1576 data points under evaporation and condensation/adiabatic conditions, respectively. Finally, it evaluates and analyzes 26 correlations under different conditions. The results show that the Sempértegui-Tapia and the Kim correlation have the best prediction ability under evaporation conditions and condensation/adiabatic conditions, respectively. This paper provides some advice on the improvement of correlation.

参考文献

[1] 颜晓虹, 唐大伟, 王际辉. 矩形微槽内水的流动沸腾压降特性实验研究[J]. 华中科技大学学报(自然科学版), 2007, 35(5):88-90.
[1] YAN Xiaohong, TANG Dawei, WANG Jihui. An experimental investigation of the pressure drop of water in a horizontal rectangle micro-groove[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2007, 35(5):88-90.
[2] 谢鸣宇, 罗小平, 胡丽琴. 微通道内R22制冷剂流动沸腾的压降特性[J]. 化学工程, 2016, 44(1):38-42.
[2] XIE Mingyu, LUO Xiaoping, HU Liqin. Pressure drop of flow boiling R22 in microchannels[J]. Chemical Engineering (China), 2016, 44(1):38-42.
[3] 姜林林, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾压降特性[J]. 化工学报, 2017, 68(12):76-84.
[3] JIANG Linlin, LIU Jianhua, ZHANG Liang, et al. Flow boiling pressure drop characteristics of CO2 in horizontal micro tube[J]. CIESC Journal, 2017, 68(12):76-84.
[4] 邱金友, 张华, 余晓明, 等. R1234ze(E)在水平圆管内流动沸腾换热过程中摩擦压降特性实验研究[J]. 制冷学报, 2016, 37(1):32-37.
[4] QIU Jinyou, ZHANG Hua, YU Xiaoming, et al. Investigation of frictional pressure drop during flow boiling of R1234ze(E) in horizontal tube[J]. Journal of Refrigeration, 2016, 37(1):32-37.
[5] 许玉, 方贤德, 张宏刚, 等. 管内两相流摩擦压力损失计算研究进展[J]. 流体机械, 2012, 40(5):34-40.
[5] XU Yu, FANG Xiande, ZHANG Honggang, et al. Research progress of frictional pressure drop calculations for two-phase flow in pipes[J]. Fluid Machinery, 2012, 40(5):34-40.
[6] 姚超, 李会雄, 薛玉卿, 等. 垂直下降管内两相流摩擦压降计算关联式评价[J]. 工程热物理学报, 2016, 37(3):545-550.
[6] YAO Chao, LI Huixiong, XUE Yuqing, et al. Evaluation of frictional pressure drop correlations for two-phase flow in vertical downward tubes[J]. Journal of Engineering Thermophysics, 2016, 37(3):545-550.
[7] KANDLIKAR S G, GRANDE W J. Evolution of microchannel flow passages: Thermohydraulic performance and fabrication technology[J]. Heat Transfer Engineering, 2003, 24(1):3-17.
[8] CHURCHILL S W. Friction-factor equation spans all fluid-flow regimes[J]. Chemical Engineering (New York), 1977, 84(24):91-92.
[9] MCADAMS W H. Vaporization inside horizontal tubes—II: Benzene oil mixtures[J]. Industrial & Engineering Chemistry, 1942, 64:193-200.
[10] AWAD M M, MUZYCHKA Y S. Bounds on two-phase frictional pressure gradient in minichannels and microchannels[C]// Proceedings of ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. Limerick, Ireland: Nanotechnology Institute, 2006: 1137-1145.
[11] AKERS W W, DEANS H A, CROSSER O K. Condensing heat transfer within horizontal tubes[J]. Chemical Engineering Progress, 1958, 54(10):4300403.
[12] AWAD M M, MUZYCHKA Y S. Effective property models for homogeneous two-phase flows[J]. Experimental Thermal and Fluid Science, 2008, 33(1):106-113.
[13] CICCHITTI A, LOMBARDI C, SILVESTRI M, et al. Two-phase cooling experiments: Pressure drop, heat transfer and burnout measurements[R]. Milan, Italy: Centro Informazioni Studi Esperienze, 1959.
[14] DUKLER A E, WICKS M, CLEVELAND R G. Frictional pressure drop in two-phase flow: A. A comparison of existing correlations for pressure loss and holdup[J]. AIChE Journal, 1964, 10(1):38-43.
[15] BEATTIE D R H, WHALLEY P B. A simple two-phase frictional pressure drop calculation method[J]. International Journal of Multiphase Flow, 1982, 8(1):83-87.
[16] LIN S, KWOK C C K, LI R Y, et al. Local frictional pressure drop during vaporization of R-12 through capillary tubes[J]. International Journal of Multiphase Flow, 1991, 17(1):95-102.
[17] DUCOULOMBIER M, COLASSON S, BONJOUR J, et al. Carbon dioxide flow boiling in a single microchannel—Part I: Pressure drops[J]. Experimental Thermal and Fluid Science, 2011, 35(4):581-596.
[18] CIONCOLINI A, THOME J R, LOMBARDI C. Unified macro-to-microscale method to predict two-phase frictional pressure drops of annular flows[J]. International Journal of Multiphase Flow, 2009, 35(12):1138-1148.
[19] VENKATESAN M, DAS S K, BALAKRISHNAN A R. Effect of diameter on two-phase pressure drop in narrow tubes[J]. Experimental Thermal and Fluid Science, 2011, 35(3):531-541.
[20] SARDESHPANDE M V, RANADE V V. Two-phase flow boiling in small channels: A brief review[J]. Sadhana, 2013, 38(6):1083-1126.
[21] LEE J, MUDAWAR I. Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I—Pressure drop characteristics[J]. International Journal of Heat and Mass Transfer, 2005, 48(5):928-940.
[22] CHOI C, KIM M. Flow pattern based correlations of two-phase pressure drop in rectangular microchannels[J]. International Journal of Heat and Fluid Flow, 2011, 32(6):1199-1207.
[23] YUN J H, JEONG J H. A review of prediction methods for two-phase pressure loss in mini/micro-channels[J]. International Journal of Air-Conditioning and Refrigeration, 2016, 24(1):1630002.
[24] LOCKHART R, MARTINELLI R. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45:39-48.
[25] CHISHOLM D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12):1767-1778.
[26] MISHIMA K, HIBIKI T. Some characteristics of air-water two-phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22(4):703-712.
[27] YU W, FRANCE D M, WAMBSGANSS M W, et al. Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube[J]. International Journal of Multiphase Flow, 2002, 28(6):927-941.
[28] HWANG Y W, KIM M S. The pressure drop in microtubes and the correlation development[J]. International Journal of Heat and Mass Transfer, 2006, 49(11/12):1804-1812.
[29] KIM S M, MUDAWAR I. Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12):3246-3261.
[30] KIM S M, MUDAWAR I. Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2):718-734.
[31] LÓPEZ-BELCHÍ A, ILLÁN-GÓMEZ F, VERA-GARCÍA F, et al. Experimental condensing two-phase frictional pressure drop inside mini-channels. Comparisons and new model development[J]. International Journal of Heat and Mass Transfer, 2014, 75:581-591.
[32] HOSSAIN M A, AFROZ H M M, MIYARA A. Two-phase frictional multiplier correlation for the prediction of condensation pressure drop inside smooth horizontal tube[J]. Procedia Engineering, 2015, 105:64-72.
[33] MACDONALD M, GARIMELLA S. Hydrocarbon condensation in horizontal smooth tubes: Part II—Heat transfer coefficient and pressure drop modeling[J]. International Journal of Heat and Mass Transfer, 2016, 93:1248-1261.
[34] RAHMAN M M, KARIYA K, MIYARA A. Comparison and development of new correlation for adiabatic two-phase pressure drop of refrigerant flowing inside a multiport minichannel with and without fins[J]. International Journal of Refrigeration, 2017, 82:119-129.
[35] LI X J, HIBIKI T. Frictional pressure drop correlation for two-phase flows in mini and micro multi-channels[J]. Applied Thermal Engineering, 2017, 116:316-328.
[36] LI X J, HIBIKI T. Frictional pressure drop correlation for two-phase flows in mini and micro multi-channels[J]. Applied Thermal Engineering, 2017, 116:316-328.
[37] CHISHOLM D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(2):347-358.
[38] ZHANG M, WEBB R L. Correlation of two-phase friction for refrigerants in small-diameter tubes[J]. Experimental Thermal and Fluid Science, 2001, 25(3/4):131-139.
[39] LI W, WU Z. Generalized adiabatic pressure drop correlations in evaporative micro/mini-channels[J]. Experimental Thermal and Fluid Science, 2011, 35(6):866-872.
[40] YU X, XIA D F. A new correlation of two-phase frictional pressure drop for evaporating flow in pipes[J]. International Journal of Refrigeration, 2012, 35(7):2039-2050.
[41] GAN Y H, XU J L, YAN Y Y. An experimental study of two-phase pressure drop of acetone in triangular silicon micro-channels[J]. Applied Thermal Engineering, 2015, 80:76-86.
[42] CHISHOLM D. Two-phase flow in pipelines and heat exchangers[M]. London, UK: Institution of Chemical Engineers, 1982.
[43] JIGE D, INOUE N, KOYAMA S. Condensation of refrigerants in a multiport tube with rectangular minichannels[J]. International Journal of Refrigeration, 2016, 67:202-213.
[44] SEMPÉRTEGUI-TAPIA D F, RIBATSKI G. Two-phase frictional pressure drop in horizontal micro-scale channels: Experimental data analysis and prediction method development[J]. International Journal of Refrigeration, 2017, 79:143-163.
[45] MÜLLER-STEINHAGEN H, HECK K. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering and Processing: Process Intensification, 1986, 20(6):297-308.
[46] PAN L M, YAN R G, HUANG H J, et al. Experimental study on the flow boiling pressure drop characteristics in parallel multiple microchannels[J]. International Journal of Heat and Mass Transfer, 2018, 116:642-654.
[47] GARIMELLA S, AGARWAL A, KILLION J D. Condensation pressure drop in circular microchannels[J]. Heat Transfer Engineering, 2005, 26(3):28-35.
[48] GARIMELLA S, AGARWAL A, COLEMAN J W. Two-phase pressure drops in the annular flow regime in circular microchannels[C]// 21st IIR International Congress of Refrigeration. Washington DC, USA: International Institute of Refrigeration, 2003: 12-22.
[49] WAMBSGANSS M W, JENDRZEJCZYK J A, FRANCE D M, et al. Frictional pressure gradients in two-phase flow in a small horizontal rectangular channel[J]. Experimental Thermal and Fluid Science, 1992, 5(1):40-56.
[50] SUN L C, MISHIMA K. Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels[J]. International Journal of Multiphase Flow, 2009, 35(1):47-54.
[51] KIM S M, MUDAWAR I. Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2014, 77:74-97.
[52] MAQBOOL M H, PALM B, KHODABANDEH R. Investigation of two phase heat transfer and pressure drop of propane in a vertical circular minichannel[J]. Experimental Thermal and Fluid Science, 2013, 46:120-130.
[53] MAQBOOL M H, PALM B, KHODABANDEH R. Flow boiling of ammonia in vertical small diameter tubes: Two phase frictional pressure drop results and assessment of prediction methods[J]. International Journal of Thermal Sciences, 2012, 54:1-12.
[54] WU J, KOETTIG T, FRANKE C, et al. Investigation of heat transfer and pressure drop of CO2 two-phase flow in a horizontal minichannel[J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10):2154-2162.
[55] COPETTI J B, MACAGNAN M H, ZINANI F. Experimental study on R-600a boiling in 2.6 mm tube[J]. International Journal of Refrigeration, 2013, 36(2):325-334.
[56] TIBIRIÇÁ C B, DA SILVA S J, RIBATSKI G. Experimental investigation of flow boiling pressure drop of R134A in a microscale horizontal smooth tube[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(1):011006.
[57] TIBIRIÇÁ C B, RIBATSKI G. Two-phase frictional pressure drop and flow boiling heat transfer for R245fa in a 2.32-mm tube[J]. Heat Transfer Engineering, 2011, 32(13/14):1139-1149.
[58] JIGE D, SAGAWA K, INOUE N. Effect of tube diameter on boiling heat transfer and flow characteristic of refrigerant R32 in horizontal small-diameter tubes[J]. International Journal of Refrigeration, 2017, 76:206-218.
[59] KEEPAIBOON C, THIANGTHAM P, MAHIAN O, et al. Pressure drop characteristics of R134a during flow boiling in a single rectangular micro-channel[J]. International Communications in Heat and Mass Transfer, 2016, 71:245-253.
[60] 黄秀杰. R32在微细通道内流动沸腾特性的实验及数值研究[D]. 北京: 清华大学, 2013.
[60] HUANG Xiujie. Experimental and numerical investigation on R32 flow boiling characteristics in micro-channels[D]. Beijing: Tsinghua University, 2013.
[61] ANWAR Z, PALM B, KHODABANDEH R. Flow boiling heat transfer, pressure drop and dryout characteristics of R1234yf: Experimental results and predictions[J]. Experimental Thermal and Fluid Science, 2015, 66:137-149.
[62] OWHAIB W. Experimental heat transfer, pressure drop, and flow visualization of R-134a in vertical mini/micro tubes[D].Stockholm, Sweden: KTH Royal Institute of Technology, 2007.
[63] DEL COL D, BORTOLATO M, AZZOLIN M, et al. Condensation heat transfer and two-phase frictional pressure drop in a single minichannel with R1234ze(E) and other refrigerants[J]. International Journal of Refrigeration, 2015, 50:87-103.
[64] LIU N, LI J M, SUN J, et al. Heat transfer and pressure drop during condensation of R152a in circular and square microchannels[J]. Experimental Thermal and Fluid Science, 2013, 47:60-67.
[65] REVELLIN R, THOME J R. Adiabatic two-phase frictional pressure drops in microchannels[J]. Experimental Thermal and Fluid Science, 2007, 31(7):673-685.
[66] DEL COL D, BISETTO A, BORTOLATO M, et al. Experiments and updated model for two phase frictional pressure drop inside minichannels[J]. International Journal of Heat and Mass Transfer, 2013, 67:326-337.
[67] DEL COL D, BORTOLATO M, BORTOLIN S. Comprehensive experimental investigation of two-phase heat transfer and pressure drop with propane in a minichannel[J]. International Journal of Refrigeration, 2014, 47:66-84.
[68] LIU N, LI J M. Experimental study on pressure drop of R32, R152a and R22 during condensation in horizontal minichannels[J]. Experimental Thermal and Fluid Science, 2016, 71:14-24.
[69] ZHU Y, WU X M, ZHAO R. R32 flow boiling in horizontal mini channels: Part II. Flow-pattern based prediction methods for heat transfer and pressure drop[J]. International Journal of Heat and Mass Transfer, 2017, 115:1233-1244.
文章导航

/