水平集中荷载作用下两层弹性半空间的基本解

展开
  • 上海交通大学建筑工程与力学学院,上海  200030
胡晨 1972年生, 1994、2000年于上海交通大学工程力学系和土木建筑工程系分别获学士、硕士学位.现为上海泰路实业发展有限公司投资分析员.主要研究兴趣为土与结构相互作用研究.|王建华 1959年生, 1992年于同济大学获博士学位.现为上海交通大学土木建筑工程系教授、博士生导师.主要研究方向为数值方法在工程中的应用、土与结构相互作用研究.发表学术论文50余篇.

收稿日期: 2000-01-28

  网络出版日期: 2021-04-25

基金资助

国家自然科学基金资助项目(59879012)

Basic Solution of Two-layer Elastic Half Space Subjected to Horizontal Concentrated Loading

Expand
  • School of Civil Eng. and Mechanics, Shanghai Jiaotong Univ. , Shanghai 200030, China

Received date: 2000-01-28

  Online published: 2021-04-25

摘要

将Muki提出的半无限弹性体作用一水平荷载时的基本解应用于每一层,根据两层弹性半空间模型的自由边界条件和各层之间的位移和应力连续条件,利用Hankel变换推导出水平集中荷载作用下两层弹性半空间的基本解,得到了内部任意一点的位移场和应力场,从而为研究层状地基中水平受荷的单桩和群桩的工作性态提供了有力的工具.文中给出了数值计算实例,并将其与Mindlin解以及Davies & Banerjee的计算结果进行了比较.

本文引用格式

胡晨, 王建华 . 水平集中荷载作用下两层弹性半空间的基本解[J]. 上海交通大学学报, 2001 , 35(04) : 618 -620 . DOI: 10.16183/j.cnki.jsjtu.2001.04.033

Abstract

According to the basic solution of semi-infinite elasticity subjected to horizontal loading presented by Muki, boundary conditions and continuous conditions between layers, the basic solution for twolayer elastic half space was derived. The displacement and stress of arbitrary point within the elasticity were also inferred. Thus, exact working property of laterally loaded piles will be obtained by applying these solutions. Several numerical examples were given. The results are well coincident with Mindlin's solution and Davies & Banerjee's computing results.

参考文献

[1] Chan K S, Karasudhi P, Lee S L. Force at a point in the interior of a layered elastic half space[J]. Int J Solids Structures, 1974, 10: 1179~1199.
[2] Davies T G, Banerjee P K. The displacement field due to a point load at the interface of a two-layered elastic half space[J]. Geotechnique, 1978, 28(1): 43~56.
[3] Muki R. Asymmetric problems of the theory of elastic for a semi-infinite solid and a thick plate [A]. Sneddon IN, Hill R.Progress in Solid Mechanics [C]. Netherlands: Northholland Publishing Company, 1960, 1: 400~407.
[4] Mindlin R. Force at a point in the interior of a semiinfinite solid[J]. Physics, 1936, 7: 195~202.
文章导航

/