非轴对称荷载下考虑流体流速的饱和土稳态动力响应

展开
  • 上海交通大学土木工程系,上海  200030
张正林(1968-),男,上海人,硕士,工程师,主要从事工程管理和岩土工程数值计算等研究.|王建华(联系人),男,教授,博士生导师,电话(Tel.): 021-62932915; E-mail: wjh417@sjtu.edu.cn.

收稿日期: 2003-06-21

  网络出版日期: 2021-04-25

基金资助

国家自然科学基金资助项目(59879012);教育部博士点基金资助项目(980224832)

Steady Dynamic Response of Saturated Soil under Nonaxisymmetrical Load Considering Velocity of Liquid

Expand
  • Dept. of Civil Eng. , Shanghai Jiaotong Univ. , Shanghai 200030, China

Received date: 2003-06-21

  Online published: 2021-04-25

摘要

由于饱和土中流固耦合,饱和土的动力问题不但要考虑土骨架的运动,而且还要考虑流体的运动.对此,不忽略流体相对于土骨架运动的惯性项,应用Hankel积分变换方法,对Biot波动方程逐次解耦后直接求解得通解;根据通解和半空间内部或表面作用水平力时的边界条件和作用面上的连续条件,求得边值问题的解;对边值问题的解进行相应的Hankel逆变换,就可求得应力、应变、位移、孔压等.最后给出了Hankel逆变换的数值方法.

本文引用格式

张正林, 高绍武, 王建华 . 非轴对称荷载下考虑流体流速的饱和土稳态动力响应[J]. 上海交通大学学报, 2004 , 38(06) : 947 -951 . DOI: 10.16183/j.cnki.jsjtu.2004.06.022

Abstract

The steady dynamic response of saturated soil was studied by means of Hankel transform. The liquid's inertia is considered, i. e. there is not any hypothesis. By using Hankel integral transform method, the solution of horizontal harmonic force applied to the interior or the surface of saturated soil is obtained. The general solutions of the Biot dynamic equations in frequency domain are established through the use of Hankel integral transforms technique. Utilizing the above-mentioned general solution, the boundary conditions of the surface of half-space and the continuous conditions at the plane of horizontal force, the solutions of the boundary value problem can be determined. By the numerical inverse Hankel transforms method, the stress and the displacement of harmonic horizontal force are obtainable. In the end, the numerical method of inversion of Hankel transform was given.

参考文献

[1] Biot M A. The theory of propagation of elastic waves in a fluid-saturated porous solid[J]. J Acoust Soc Am, 1956, 28(2): 168-191.
[2] Paul S. On the displacements produced in porous elastic half-space by an impulsive line load (no-dissipative case)[J]. Pure Appl Geophys, 1976, 114(5): 605-614.
[3] Chen J. Time domain fundamental solution to Biot 's complete equation of dynamic poroelasticity. Part I: Two-dimensional solution[J]. Int J Solid Struct, 1994, 31: 1447-1490.
[4] 杨俊, 吴世明, 陈云敏. 弹性层和饱和半空间体系稳定动力响应[J]. 土木工程学报, 1997, 30(3): 39-47.
[4] YANG Jun, WU Shi-ming, CHEN Yun-min. Steady state response of elastic soil layer and saturated layered half-space[J]. China Civil Engineering Journal, 1997, 30(3): 39-47.
[5] 张引科, 黄义. 弹性饱和多孔介质在非对称荷载下的稳态动力响应[J]. 土木工程学报, 2002, 35(3): 41-45.
[5] ZHANG Yin-ke, HUANG Yi. Steady dynamic response of elastic saturated porous mediumunder no noatisymmetrical load[J]. China Civil Engineering Journal, 2002, 35(3): 41-45.
[6] 陆建飞, 王建华, 沈为平. 半空间饱和土作用水平力的格林函数[J]. 地震学报, 2001, 23(2): 185-191.
[6] LU Jian-fei, WANG Jian-hua, SHEN Wei-ping. The green's function of the harmonic horizontal force applied to the interior of the saturated half-space[J]. Acta Seismologica Sinica, 2001, 23(2): 185-191.
[7] Zienkiewicz O C, Chang C T, Bettess P. Drained, undrained, consolidating and dynamic behavior assumptions in solid[J]. Geotech, 1980, 30(3): 385-395.
[8] 金波. 多孔饱和半空间上弹性圆板垂直振动的积分方程[J]. 力学学报, 2000, (1): 78-85.
[8] JIN Bo. Integral Equations of vertical vibration of an elastic circular plate on a fluid-saturated poroelastic half space[J]. Acta Mechanica Sinica, 2000, (1): 78-85.
[9] Zeng X, Rajapakse R K N D. Vertical vibrations of a rigid disk embedded in a porelastic medium[J]. Int J Numer Anal Mech Geomech, 1999, 23: 2075-2095.
[10] Sneddon I N. Fourier transforms [M]. New York: McGraw-Hillv, 1951.
[11] Muki R. Asymmetric problems of the theory of elasticity for a semi-infinite solid and a thick plate [A]. Progress in Solid Mechanics Vol. 1[C]. New York: North Holland, 1960.
[12] 陆建飞. 饱和土中的桩与土共同作用问题研究[D]. 上海: 上海交通大学建筑工程与力学学院, 2000.
文章导航

/