带喷射器的跨临界CO2车用空调系统实验研究
收稿日期: 2020-03-09
网络出版日期: 2021-03-03
基金资助
国家自然科学基金资助项目(51776119)
Experimental Study of a Trans-Critical CO2 Mobile Air Conditioning System with an Ejector
Received date: 2020-03-09
Online published: 2021-03-03
李浩, 张振宇, 宋霞, 陈江平 . 带喷射器的跨临界CO2车用空调系统实验研究[J]. 上海交通大学学报, 2021 , 55(2) : 179 -187 . DOI: 10.16183/j.cnki.jsjtu.2020.061
A carbon dioxide(CO2) ejector expansion air conditioning system for vehicles is developed in a calorimeter laboratory. In experimental tests on a standard mobile air conditioning bench, the effects of different operating parameters on the performance of the CO2 refrigeration system for vehicles are studied, and the performance advantages of the CO2 ejector expansion refrigeration system are comparatively analyzed. The research results show that the cooling capacity of the CO2 ejector expansion refrigeration system for vehicles is almost equal to that of the CO2 conventional cooling system. Both increasing the indoor air flow rate and increasing the compressor speed can effectively increase the cooling capacity of the CO2 ejector expansion refrigeration system, and the ejector can increase the coefficient of performance (COP) of the system by 1.65% to 12.60% under different working conditions. The outdoor temperature has a great impact on the CO2 ejector expansion refrigeration system performance, and the performance of CO2 ejector expansion refrigeration system for vehicles decays obviously at a high ambient temperature.
[1] | SU S S, FANG X K, LI L, et al. HFC-134a emissions from mobile air conditioning in China from 1995 to 2030[J]. Atmospheric Environment, 2015, 102: 122-129. |
[2] | 丁国良,黄冬平,张春路. 跨临界二氧化碳汽车空调稳态仿真[J]. 工程热物理学报,2001, 22(3): 272-274. |
[2] | DING Guoliang, HUANG Dongping, ZHANG Chunlu. Steady-state simulation of transcritical carbon dioxide automobile air-conditioner[J]. Journal of Engineering Thermophysics, 2001, 22(3): 272-274. |
[3] | STEVEN B J, YANA-MOTTA S F, DOMANSKI P A. Comparitive analysis of an automotive air conditioning systems operating with CO2 and R134a[J]. International Journal of Refrigeration, 2002, 25(1): 19-32. |
[4] | PETTERSEN J, HAFNER A, SKAUGEN G, et al. Development of compact heat exchangers for CO2 air-conditioning systems[J]. International Journal of Refrigeration, 1998, 21(3): 180-193. |
[5] | 刘洪胜,陈江平,陈芝久. CO2轿车空调降温性能试验研究[J]. 汽车工程,2006, 28(6): 586-589. |
[5] | LIU Hongsheng, CHEN Jiangping, CHEN Zhijiu. An experimental study on the performance of a mobile CO2 air conditioner[J]. Automotive Engineering, 2006, 28(6): 586-589. |
[6] | 刘洪胜,金纪峰,陈江平,等. 自然工质二氧化碳汽车空调性能的实验研究[J]. 上海交通大学学报,2006, 40(8): 1407-1411. |
[6] | LIU Hongsheng, JIN Jifeng, CHEN Jiangping, et al. Experimental studies on transcritical CO2 automotive air conditioning systems[J]. Journal of Shanghai Jiao Tong University, 2006, 40(8): 1407-1411. |
[7] | 金纪峰. 采用微通道换热器的二氧化碳汽车空调系统研究[D]. 上海: 上海交通大学,2010. |
[7] | JIN Jifeng. Research on a carbon dioxide automobile air conditioning system using microchannel heat exchangers[D]. Shanghai: Shanghai Jiao Tong University, 2010. |
[8] | JIN J F, CHEN J P, CHEN Z J. Development and validation of a microchannel evaporator model for a CO2 air-conditioning system[J]. Applied Thermal Engineering, 2011, 31(2/3): 137-146. |
[9] | KIM S C, WON J P, KIM M S. Effects of operating parameters on the performance of a CO2 air conditioning system for vehicles[J]. Applied Thermal Engineering, 2009, 29(11/12): 2408-2416. |
[10] | LIU F, GROLL E A. Study of ejector efficiencies in refrigeration cycles[J]. Applied Thermal Engineering, 2013, 52(2): 360-370. |
[11] | YU B B, YANG J Y, WANG D D, et al. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle[J]. Energy, 2019, 189: 116147. |
[12] | ELBEL S, LAWRENCE N. Review of recent developments in advanced ejector technology[J]. International Journal of Refrigeration, 2016, 62: 1-18. |
[13] | BESAGNI G, MEREU R, INZOLI F. Ejector refrigeration: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 373-407. |
[14] | LI D Q, GROLL E A. Transcritical CO2 refrigeration cycle with ejector-expansion device[J]. International Journal of Refrigeration, 2005, 28(5): 766-773. |
[15] | HAIDA M, SMOLKA J, HAFNER A, et al. Numerical investigation of heat transfer in a CO2 two-phase ejector[J]. Energy, 2018, 163: 682-698. |
[16] | ELBEL S, HRNJAK P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation[J]. International Journal of Refrigeration, 2008, 31(3): 411-422. |
[17] | LIU F, LI Y, GROLL E A. Performance enhancement of CO2 air conditioner with a controllable ejector[J]. International Journal of Refrigeration, 2012, 35(6): 1604-1616. |
[18] | ZHU Y H, LI C H, ZHANG F Z, et al. Comprehensive experimental study on a transcritical CO2 ejector-expansion refrigeration system[J]. Energy Conversion and Management, 2017, 151: 98-106. |
[19] | SMOLKA J, PALACZ M, BODYS J, et al. Performance comparison of fixed- and controllable-geometry ejectors in a CO2 refrigeration system[J]. International Journal of Refrigeration, 2016, 65: 172-182. |
[20] | LI Y F, DENG J Q, MA L. Experimental study on the primary flow expansion characteristics in transcritical CO2 two-phase ejectors with different primary nozzle diverging angles[J]. Energy, 2019, 186: 115839. |
[21] | 王雨风,王丹东,胡记超,等. 两相流CO2喷射器内部流场的数值模型[J]. 上海交通大学学报,2019, 53(7): 860-865. |
[21] | WANG Yufeng, WANG Dandong, HU Jichao, et al. A numerical model of the two-phase CO2 ejectors[J]. Journal of Shanghai Jiao Tong University, 2019, 53(7): 860-865. |
[22] | MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
/
〈 |
|
〉 |